

Расход

TransPort[®] PT900

Портативный ультразвуковой расходомер для жидкостей

Руководство пользователя

910-315-RU Ред. А Февраль 2017 г.

TransPort[®] PT900

Портативный ультразвуковой расходомер для жидкостей

Руководство пользователя

910-315-RU Ред. А Февраль 2017 г.

www.gemeasurement.com

©2017 General Electric Company. Все права защищены. Техническое содержание подлежит изменениям без уведомления. [эта страница намеренно оставлена без содержания]

Типог	-рафски	1е условные обозначения	- vii	
Вопр	осы без	опасности	- vii	
Вспомогательное оборудование viii				
Регистрация изделия іх				
Услуг	и		- ix	
Соблі	одение	требований законодательства	- X	
Главо	а 1. Вве	дение		
1.1	Регист	трация изделия1		
1.2	Описан	Описание системы		
Главо	а 2. Усто	ановка		
2.1	Введен	ие	3	
2.2	Распак	овка системы РТ900	4	
2.3	Устано	вка аккумуляторной батареи в передатчик	6	
2.4	Монтах	к передатчика РТ900	7	
2.5	Устано преобр	вка крепежного приспособления и измерительных разователей7		
	2.5.1	Пример установки	8	
	2.5.2	Расчет расстояния между измерительными преобразователями9		
	2.5.3	Монтаж крепежного приспособления РТ9	9	
	2.5.4	Проверка держателей измерительных преобразователей	16	
	2.5.5	Установка измерительных преобразователей	17	
	2.5.6	Установки с четным и нечетным числом проходов	21	
2.6	Выполн	нение электрических соединений	33	
	2.6.1	Подключение сетевого питания	33	
	2.6.2	Подключение измерительных преобразователей	35	
	2.6.3	Подключение цифрового выхода	36	
	2.6.4	Подключение аналоговых входов и выхода	37	
	2.6.5	Подключение энергетических кабелей	37	
	2.6.6	Использование USB-порта	38	
	2.6.7	Использование беспроводного интерфейса Bluetooth	38	
2.7	Обращение с батареями системы РТ900			
	2.7.1	Зарядка и хранение батарей	39	
	2.7.2	Замена батарей	40	
	2.7.3	Утилизация батарей	41	

2.8	Включе	ение и выключение	41
2.9 Светодиодные индикаторы системы РТ900		42	
	2.9.1	Светодиод питания	43
	2.9.2	Светодиод Bluetooth	43
	2.9.3	Светодиоды состояния	43
	2.9.4	Светодиод батареи	43
Глав	a 3. Hav	альная настройка	
	-		

3.1	Введение		. 45
3.2	Зарядка передатчика РТ900 и планшета		. 45
3.3 Установка или обновление приложения (АРР) РТ900		овка или обновление приложения (АРР) РТ900	. 45
	3.3.1	Проверка версии приложения (АРР)	. 45
	3.3.2	Установка или обновление приложения Android РТ900	. 46
	3.3.3	Установка АРР планшета с SD-карты	. 47
3.4	4 Подключение планшета к передатчику		. 49
3.5	Испол	ьзование главного меню и слайд-меню приложения	. 55
	3.5.1	Главное меню	. 55
	3.5.2	Слайд- меню	. 56

Глава 4. Программирование

4.1	Конфи	гурирование единиц измерения	. 57
4.2	Конфигурирование канала		. 59
4.3	Программирование меню PIPE (ТРУБА)		. 61
	4.3.1	Материалы труб	. 62
	4.3.2	Размеры трубы	. 62
	4.3.3	Футеровка трубы	. 63
4.4	Прогр	аммирование меню FLUID (ТЕКУЧАЯ СРЕДА)	. 64
4.5	Программирование меню TRANSDUCERS (ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ)66		
	4.5.1	Программирование параметров измерительных преобразователей67	
	4.5.2	Установка поправочного коэффициента Рейнольдса	. 69
	4.5.3	Программирование коэффициента счетчика	. 70
4.6	Программирование меню PLACEMENT (УСТАНОВКА)		
	4.6.1	Просмотр конфигурации проходов	. 72
	4.6.2	Просмотр расстояния между измерительными преобразователями73	

4.7	Конфигурирование опций программирования			
	4.7.1	Программирование закладки ENERGY (ЭНЕРГИЯ)	79	
	4.7.2	Программирование закладки INPUTS (ВХОДЫ)	81	
	4.7.3	Программирование закладки OUTPUTS (ВЫХОДЫ)	82	
	4.7.4	Программирование закладки USER FUNCTIONS		
		(ПОЛЬЗОВАТЕЛЬСКИЕ ФУНКЦИИ)87		
Глав	ва 5. Из	мерения		
5.1	Введе	ние	91	
5.2	Настр	ойка измерений для отображения	92	
5.3	Просм	иотр измерений	94	
	5.3.1	Отображение нескольких измерений	95	
	5.3.2	Отображение одного измерения	96	
	5.3.3	Экран сумматора партии	99	
	5.3.4	Отображение диагностических параметров	100	
Глав	sa 6. Per	гистрация данных		
6.1	Введе	ние	101	
6.2	Добав	вление журнала регистрации	102	
6.3	Удале	ние, выключение и редактирование журнала регистрации	104	
	6.3.1	Удаление журнала регистрации	105	
	6.3.2	Редактирование журнала регистрации	106	
	6.3.3	Просмотр журнала регистрации	107	
Глав	sa 7. Ko	нфигурирование передатчика		
7.1	Введе	ние	109	
7.2	Обное	вление программного обеспечения (ПО) передатчика РТ900 . 🗆	112	
7.3	Прогр	раммирование меню передатчика SERVICE (СЕРВИС)	115	
	7.3.1	Программирование меню CALIBRATION (КАЛИБРОВКА)	115	
	7.3.2	Программирование меню METER SETUP (НАСТРОЙКА СЧЕТЧИКА)118		
	7.3.3	Программирование меню TESTING (ТЕСТИРОВАНИЕ)	121	
	7.3.4	Программирование меню ERROR LIMITS (ДОПУСКИ)	124	

Глава 8. Коды ошибок и устранение неисправностей

8.1	Коды	ошибок	7
	8.1.1	Заголовок ошибки	7
	8.1.2	Ошибки расхода	7

8.2	Диагностика		
	8.2.1 Введение		
	8.2.2 Проблемы с текучей средой и трубой		
8.3	Диагностические параметры132		
8.4	Получение справки		
	8.4.1 Экран About (Сведения о) 134		
	8.4.2 Экран Diagnostics (Диагностика) 135		
	8.4.3 Экран Service (Сервис)136		
	8.4.4 Экран Spare Parts (Запасные части) 137		
8.5	Список тем справки		
8.6	Руководство по быстрому запуску140		
Глава	9. Обмен данными		
9.1	Обмен данными по протоколу Modbus141		
9.2	Карта регистров Modbus		
9.3	Обмен данными по интерфейсу Bluetooth 151		
Прил	ожение А. Спецификации		
A.1	Эксплуатация и эксплуатационные характеристики		
A.2	Передатчик расхода РТ900154		
A.3	Интерфейс пользователя		
A.4	Программное приложение (РТ900 АРР)		
A.5	Накладные измерительные преобразователи		
A.6	Комплектующие		
A.7	Опции		
A.8	Гребования заказчика к кабелям для соединений AIO/DIO 157		
Прил	ожение В. Записи данных		
B.1	Запись об обслуживании 159		
B.2	Исходные установки		
B.3	Исходные параметры диагностики		

Типографские условные обозначения

Примечание: В параграфах «Примечание» предоставлена дополнительная информация по теме, которая является полезной, но не необходимой для надлежащего выполнения задачи.

Важно: В параграфах «Важно» подчеркивается важность инструкций, необходимых для правильной настройки оборудования. Несоблюдение этих инструкций может стать причиной ненадёжной работы.

ОСТОРОЖНО! В параграфах «Осторожно» описывается потенциально опасная ситуация, которая может стать причиной легкой или средней травмы или повреждения оборудования.

ПРЕДУПРЕЖДЕНИЕ! В параграфах «Предупреждение» описывается потенциально опасная ситуация, которая может стать причиной тяжелой травмы или смерти.

Вопросы безопасности

ПРЕДУПРЕЖДЕНИЕ! Пользователь несет ответственность за обеспечение того, что все местные, технические условия, нормативы, правила и законы, технические условия, нормативы, правила и законы графства или штата, и национальные технические условия, нормативы, правила и законы, относящиеся к безопасности и к безопасным условиям эксплуатации, соблюдены для каждой установки.

ПРЕДУПРЕЖДЕНИЕ! Если накладные устройства и измерительные преобразователи монтируются на трубопроводе над рабочей зоной или проходом, должны применяться безопасные методы работы, обеспечивающие защиту от падающих предметов.

ПРЕДУПРЕЖДЕНИЕ! Пользователь несет ответственность за соответствие кабелей PWR, Hart, Modbus и входов/выходов спецификациям, перечисленным в Приложении А.

Вспомогательное оборудование

Местные стандарты техники безопасности

Пользователь должен быть уверенным в том, что он эксплуатирует все вспомогательное оборудование в соответствие с местными техусловиями, стандартами, нормативами или законами, относящимися к безопасности.

Рабочая зона

ПРЕДУПРЕЖДЕНИЕ! Вспомогательное оборудование может функционировать, как в ручном, так и в автоматическом режимах работы. Поскольку оборудование может неожиданно и без предупреждения перемещаться, нельзя входить в рабочую ячейку этого оборудования во время автоматического режима работы, а также не входить в зону обслуживания этого оборудования во время ручного режима работы. В таком случае возможна тяжелая травма.

ПРЕДУПРЕЖДЕНИЕ! Проверьте, чтобы питание вспомогательного оборудования было выключено (OFF) и заблокировано прежде, чем выполнять операции техобслуживания на оборудовании.

Квалификация персонала

Убедитесь в том, что весь персонал прошел обучение, утвержденное производителем, применяемое для вспомогательного оборудования.

Персональное защитное оборудование

Убедитесь в том, что операторы и персонал по техобслуживанию обеспечены всеми средствами защиты, применяемыми для вспомогательного оборудования. Примеры включают защитные очки, защитные каски, защитную обувь и т.п.

Несанкционированные действия

Убедитесь в том, что неуполномоченный персонал не может получить доступ к эксплуатации оборудования.

Регистрация изделия

Благодарим за приобретение модели *TransPort*[®] РТ900 у GE. Зарегистрируйте свое изделие на сайте <u>www.gemeasurement.com/productregistration</u>, чтобы получать техническую поддержку, в том числе, как минимум, обновления версий программного/аппаратно-программного обеспечения, информацию об изделии и специальные предложения.

Услуги

GE обеспечивает заказчиков штатом опытного персонала по обслуживанию, готового ответить на технические запросы, а также услугами по обслуживанию на площадке или удаленному обслуживанию. В дополнение к нашему обширному портфелю ведущих в отрасли решений, мы предлагаем различные типы гибких и масштабируемых услуг по поддержке, включая: обучение, ремонт изделий, сервисные соглашения и т.п. Более подробная информация об услугах приведена на сайте www.gemeosurement.com/.

Соблюдение требований законодательства

Директива по удалению в отходы электрического и электронного оборудования (WEEE)

Компания GE Measurement & Control Solutions является активным участником Европейской инициативы по вторичному использованию отходов электрического и электронного оборудования *Waste Electrical and Electronic Equipment* (WEEE) (директива 2012/19/EU).

Приобретенное вами оборудование для его производства требует добычи и использования природных ресурсов. Оборудование может содержать опасные вещества, которые могут нанести вред окружающим людям и окружающей среде.

Чтобы избежать распространения этих веществ в окружающую среду, а также для снижения спроса на природные ресурсы мы призываем вас использовать принятые системы утилизации. Эти системы позволяют рациональным способом повторно использовать или восстанавливать большую часть материалов вашего отслужившего оборудования. Символ перечеркнутой урны с колесиками призывает вас использовать эти системы.

В случае необходимости получения дополнительной информации по системам сбора, повторного использования и переработки обратитесь к вашей местной или региональной администрации по вопросам утилизации. Посетите сайт

http://www.gemeasurement.com/environmental-health-safety-ehs где приведены инструкции по повторному использованию и дополнительная информация по данной инициативе.

RoHS

TransPort[®] РТ900 полностью соответствует нормам RoHS (директива 2002/95/EC).

Правила FCC/Лицензия министерства промышленности Канады

ОСТОРОЖНО! Данное устройство соответствует части 15 правил FCC / лицензии министерства промышленности Канады, за исключением стандарта (ов). Эксплуатация устройства возможна при соблюдении следующих двух условий: (1) устройство не может стать причиной вредных помех и (2) данное устройство устойчиво к помехам, включая помехи, которые могут вызвать сбои в работе данного устройства.

MISE EN GARDE ! Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Изменения или модификации оборудования, которые однозначно не одобрены стороной, несущей ответственность за соответствие оборудования техническим стандартам, аннулирует право пользователя эксплуатировать данное оборудование.

Оборудование было протестировано и признано соответствующим требованиям и ограничениям, предъявляемым к цифровым устройствам класса В, в соответствии с частью 15 правил Федеральной комиссии связи США. Данные ограничения разработаны для обеспечения приемлемой защиты от вредных воздействий при установке в жилых зонах. Это оборудование создает, использует и может излучать радиоволны и, в случае несоблюдения инструкции во время его установки и эксплуатации может быть причиной критичных помех для систем радиосвязи. Однако в определенной обстановке отсутствие радиопомех не гарантируется. Если данное оборудование создает критичные помехи, мешающие приему радио или телевизионного сигнала, которые могут быть выявлены методом включении и выключения оборудования, пользователь может попытаться устранить создание помех одним из следующих способов:

- Перенаправлением или перестановкой приемной антенны.
- Увеличением расстояния между оборудованием и приемником.
- Переключением оборудования в розетку, относящуюся к цепи, отличной от той, к которой подключен приемник.
- Получить консультацию дистрибьютора или опытного радиотехника.

Правила FCC/Лицензия министерства промышленности Канады (продолжение)

По нормам министерства промышленности Канады данный радиопередатчик может применяться только с использованием антенны, тип и максимальный (или меньший) коэффициент усиления которой одобрен для передатчика министерством промышленности Канады. Для уменьшения потенциального создания радиопомех другим пользователям тип антенны и ее коэффициент усиления должен быть выбран таким образом, чтобы эффективная мощность изотропного излучения (e.i.r.p.) была не более той, которая необходима для обеспечения надежной связи.

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

Данное устройство соответствует требованиям промышленных стандартов Канады относительно радиосистем для которых не требуется лицензирования. Эксплуатация устройства возможна при соблюдении следующих двух условий:

- 1. Данное устройство не создает помех; и
- **2.** Данное устройство устойчиво к помехам, включая помехи, которые могут вызвать сбои в работе данного устройства.

Напоминание МРЕ

Для обеспечения соответствия к требования по воздействию ВЧ FCC/IC, расстояние 20 см, или больше, должно быть обеспечено между антенной данного устройства и людьми во время эксплуатации устройства. Для обеспечение соответствия работа на меньших расстояниях не рекомендуется.

Les antennes installées doivent être situées de facon à ce que la population ne puisse y être exposée à une distance de moin de 20 cm. Installer les antennes de facon à ce que le personnel ne puisse approcher à 20 cm ou moins de la position centrale de l' antenne. La FCC des éltats-unis stipule que cet appareil doit être en tout temps éloigné d'au moins 20 cm des personnes pendant son functionnement. Предупредительное письмо Тайваня

低功率電波輻射性電機管理辦法

第十二條 經型式認證合格之低功率射頻電機,非經許可,公司、商號 或使用者均不得擅自變更頻率、加大功率或變更原設計之特性及功 能。

第十四條 低功率射頻電機之使用不得影響飛航安全及干擾合法通信; 經發現有干擾現象時,應立即停用,並改善至無干擾時方得繼續使 用。

Предупреждение КСС Кореи

1. Предупреждение по ЭМС (тип В)

기 종 별	사용자안내문
B 급 기기 (가정용 정보통신기기)	이 기기는 가정용 (B 급) 전자파적합기기 로서 주 로 가정에서 사용하는 것을 목적으로 하며 , 모든지역에서 사용할 수 있습니다.

2. Предупреждение по ВЧ

당해 무선설비는 전파혼신 가능성이 있으므로 인명안전과 관련된 서비스는 할 수 없음 [эта страница намеренно оставлена без содержания]

Глава 1. Введение

1.1 Регистрация изделия

Благодарим Вас за покупку расходомера $TransPort^{
R}$ РТ900 от компании GE. Зарегистрируйте свое изделие на сайте

<u>www.gemeasurement.com/productregistration</u>, чтобы получать техническую поддержку, в том числе, как минимум, обновления версий программного/аппартатно-программного обеспечения, информацию об

изделии и специальные предложения.

1.2 Описание системы

РТ900 представляет собой переносной датчик для измерения расхода жидких продуктов. В нем используется электронная платформа и упрощенная техническая конструкция, чтобы максимально упростить его установку и применение. В состав системы входит планшет с операционной системой Android[®], передатчик, пара измерительных преобразователей, новое крепежное приспособление для накладной фиксации и кабель измерительных преобразователей (см. *Puc. 1* ниже).

В число дополнительных принадлежностей для РТ900 входят толщиномер, датчик температуры с фиксаторами и приспособление для накладного крепежа на трубы диаметром до 48 дюймов. Система РТ900 поддерживает связь по интерфейсу Bluetooth[®] с удаленным *планшетом с дисплеем*.

Рис. 1: Система РТ900, монтируемая на трубе

[эта страница намеренно оставлена без содержания]

Глава 2. Установка

2.1 Введение

Для обеспечения безопасной и надежной работы РТ900 систему следует устанавливать в соответствии с действующими указаниями компании GE. Эти указания подробно разъясняются в данной главе и содержат следующие разделы:

- Распаковка системы РТ900 (см. стр. 4)
- Монтаж передатчика РТ900 (см. стр. 7)
- Установка крепежного приспособления и измерительных преобразователей (см. стр. 7)
- Выполнение электрических соединений (см. стр. 33)

ПРЕДУПРЕЖДЕНИЕ! Измерительный преобразователь расхода РТ900 может измерять расход многих жидкостей, некоторые из которых потенциально опасны. Значение соблюдения техники безопасности невозможно переоценить.

ПРЕДУПРЕЖДЕНИЕ! Обязательно соблюдайте все применимые местные нормы и правила техники безопасности по установке электрооборудования и работе с опасными жидкостями и газами или в опасных режимах расхода. Проконсультируйтесь с персоналом, обеспечивающим безопасное проведение работ, или с органами, отвечающими за технику безопасности, чтобы удостовериться в безопасности порядка работ или методики.

ВНИМАНИЮ ЕВРОПЕЙСКИХ ЗАКАЗЧИКОВ! В соответствии с требованиями знака CE и знака UL все кабели должны иметь параметры, указанные в приложении *"Требования заказчика к кабелям для соединений AIO/DIO" на стр.* 157.

2.2 Распаковка системы РТ900

Прежде чем доставать систему РТ900 из футляра для переноски (см. дополнительный жесткий футляр для переноски на *Рисунок 2 на странице 5*), тщательно проверьте его содержимое. Прежде чем выбросить любые упаковочные материалы, проверьте наличие документации и всех компонентов, перечисленных в упаковочной ведомости. В случае обнаружения некомплектности или повреждений, немедленно обратитесь за помощью в *Службу поддержки клиентов GE (GE Customer Care)*.

Поскольку систему РТ900 можно заказать во многих разных конфигурациях, следующая упаковочная ведомость приведена только в качестве типового примера:

- 1. Измерительные преобразователи (2) 9. Источник питания РТ900
- 2. Крепежное приспособление
- 3. Кабели измерительных преобразователей
- 4. Передатчик
- 5. Планшет
- 6. Кабель питания планшета
- 7. SD-карта
- 8. Футляр

- 10. Мерная лента для измерения наружного диаметра
- 11. Связующее вещество
- 12. Монтажная скоба РТ900 с магнитом
- 13. Датчик температуры
- 14. Толщиномер
- 15. Документация

В дополнение к стандартным комплектующим, для применения вместе с системой РТ900 имеются следующие дополнительные комплектующие:

- Комплект для измерения энергии с модулем термометров сопротивления (RTD) и кабелем термометров сопротивления для подключения к передатчику РТ900
- Кабель аналогового ввода/вывода (AIO) с кабельной коробкой
- Кабель цифрового ввода/вывода (DIO) с кабельной коробкой
- Зарядное устройство для аккумуляторных батарей
- Удлинительный кабель для измерительных преобразователей длиной до 30 м (100 футов)
- Цепь длиной 48 дюймов для крепежного приспособления

2.2 Распаковка системы РТ900 (продолжение)

Рис. 2: Система РТ900 в жестком футляре

2.3 Установка аккумуляторной батареи в передатчик

Чтобы установить аккумуляторную батарею в передатчик (см. Рис. 3 ниже):

- 1. С помощью отвертки поверните два быстросъемных шурупа на крышке аккумулятора на 90°, чтобы открыть передатчик.
- 2. Выньте имеющуюся аккумуляторную батарею.
- **3.** Установите новую аккумуляторную батарею в отделение для аккумулятора и поставьте на место крышку аккумулятора. Закрепите крышку, затянув два быстросъемных шурупа.

Рис. 3: Установка аккумуляторной батареи в передатчик

2.4 Монтаж передатчика РТ900

Портативный передатчик РТ900 помещен в прочный прорезиненный корпус, пригодный для использования в помещениях и вне помещений. Он может размещаться в жестком футляре для переноски или монтироваться на трубе с помощью либо мягкого хомута, либо магнитного крепления (см. *Puc. 4* ниже).

Примечание: Для безопасного использования мягкого хомута или магнитного крепления для монтажа передатчика температура трубы должна быть от -20°C до примерно +40°C.

Рис. 4: Варианты монтажа передатчика РТ900

2.5 Установка крепежного приспособления и измерительных преобразователей

В данном разделе приводится подробное описание того, как установить на трубе стандартное приспособление для крепежа измерительных преобразователей РТ9.

Примечание: Обратитесь в компанию GE за инструкциями по установке дополнительного крепежного приспособления CF-LP (показанного на Рис. 5 ниже).

Рис. 5: Крепежное приспособление CF-LP

2.5.1 Пример установки

На Рис. 6 ниже для справки показана выполненная типовая установка РТ900.

Рис. 6: Типовая установка РТ900

2.5.2 Расчет расстояния между измерительными преобразователями

ВНИМАНИЕ! Требуемое расстояние между измерительными преобразователями рассчитывается приложением (АРР) после программирования меню PIPE (ТРУБА), FLUID (ЖИДКОСТЬ), TRANSDUCER (ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ) и PLACEMENT (РАЗМЕЩЕНИЕ). Прежде чем приступать к этой установке, вам следует выполнить программирование, начинающееся в Глава 4. Программирование на странице 57 и заканчивающееся в "Просмотр расстояния между измерительными преобразователями" на стр. 73. Используйте это рассчитанное расстояние между измерительными преобразователями в следующих разделах.

2.5.3 Монтаж крепежного приспособления РТ9

Чтобы смонтировать крепежное приспособление РТ9 (см. *Puc.* 7 ниже) на трубе, выполните следующие шаги:

Рис. 7: Крепежное приспособление РТ9 с измерительными преобразователями CRR

- 1. Прежде чем монтировать крепежное приспособление, обратитесь к *Рисунок 8 на странице 10* и действуйте следующим образом:
 - Обеспечьте, чтобы винты (A) цепного механизма были прикреплены к пластинам концевой детали и полностью затянуты.
 - Обеспечьте, чтобы последнее звено цепи было закреплено в отверстии винта цепного механизма (**B**) с обеих сторон концевой детали.
 - Обеспечьте, чтобы винт с рифленой головкой (С) на подвижном зажиме был затянут, чтобы не допустить никакого перемещения во время монтажа.

Рис. 8: Предварительная установка кронштейна

- Выберите место монтажа крепежного приспособления на трубопроводе, которое отвечает следующим требованиям (см. *Рис. 9* ниже):
 - Прямой участок трубы длиной не менее 10 ее номинальных диаметров (без фитингов и изгибов) перед расположенным выше по потоку измерительным преобразователем
 - Прямой участок трубы длиной не менее 5 ее номинальных диаметров (без фитингов и изгибов) после расположенного ниже по потоку измерительного преобразователя
 - Зазор не менее 6 дюймов (150 мм) от наружного края каждой концевой детали до ближайшего соединения, сварного шва или фланца на трубопроводе

Рис. 9: Выбор места на трубе

3. Отрегулируйте положение крепежного приспособления так, чтобы наружный край ближайшей концевой детали находился на выбранном расстоянии от ближайшего впускного или выпускного отверстия, соединения или фитинга на трубопроводе (см. *Рис. 10* ниже).

Рис. 10: Регулировка положения крепления

4. Установите крепежное приспособление сверху трубы так, чтобы для удерживания этого положения во время установки требовалось минимальное усилие (см. *Puc. 11* ниже).

Рис. 11: Крепление установлено сверху трубы

5. Убедитесь, что небольшие вырезные пазы в нижней части концевых деталей охватывают трубу (см. *Рис. 12* ниже). Также убедитесь, что отметки шкалы на направляющем стержне крепежного приспособления будут хорошо видны по завершении установки.

Рис. 12: Вырезной паз

- **6.** Чтобы разместить цепь вокруг трубы, обратитесь к *Рисунок 13 на странице 13* и выполните следующие шаги:
 - **а.** Найдите винтовой механизм цепи, концевую пластину и паз для цепи на концевой детали крепежного приспособления, ближайшей к базовому фитингу трубы.
 - **b.** Развинтите винтовой механизм цепи, затем обмотайте всю металлическую цепь вокруг трубы.
 - с. Нажмите сверху на винтовой механизм цепи и удерживайте его нажатым. Затем потяните за цепь, чтобы она плотно прилегла к трубе, и введите цепь в маленький паз на противоположной винтовому механизму цепи стороне концевой детали.
 - **d.** Отпустите винтовой механизм цепи и затяните его ровно настолько, чтобы устранить всякую слабину цепи.

Рис. 13: Размещение цепи

7. Повторите предыдущие шаги, чтобы установить цепь на противоположном конце крепежного приспособления (см. *Puc. 14* ниже). Крепежное приспособление должно быть надежно смонтировано на трубе, но все же оно должно быть закреплено достаточно неплотно, чтобы была возможна окончательная регулировка.

Рис. 14: Крепление с затянутыми цепями

8. Поверните крепление на трубе в положение 3 часов или 9 часов (см. *Рис. 15* ниже). Установка сверху или снизу трубы не рекомендуется. Убедитесь, что труба продолжает входить в вырезной паз на нижней части концевых деталей, чтобы гарантировать параллельность крепления осевой линии трубы.

9. По завершении окончательной регулировки полностью затяните обе цепи, поворачивая гайку наверху обоих винтовых механизмов цепей (см. *Puc. 16* ниже), пока цепь не будет затянута достаточно плотно, чтобы противодействовать любому перемещению крепления.

Рис. 16: Зафиксируйте крепление на трубе

Примечание: Поскольку последние два шага влияют друг на друга, повторяйте их до тех пор, пока крепление не будет одновременно хорошо выровнено и надежно зафиксировано на трубе.

2.5.4 Проверка держателей измерительных преобразователей

Перед установкой измерительных преобразователей в крепежное приспособление к каждому измерительному преобразователю следует прикрепить его держатель. Держатель измерительного преобразователя устанавливается на каждый измерительный преобразователь компанией GE перед отгрузкой. Проверьте, что на ваши измерительные преобразователи уже установлены их держатели и что они надежно закреплены. Если это так, то пропустите этот раздел.

Измерительный преобразователь в полном сборе содержит следующие элементы:

- Держатель зажима: Постоянно зафиксирован к крепежному приспособлению
- **Держатель измерительного преобразователя:** Прикреплен к измерительному преобразователю с возможностью демонтажа
- Измерительный преобразователь: Перед монтажом измерительный преобразователь устанавливается в держатель измерительного преобразователя и закрепляется установочными винтами. Во время монтажа держатель измерительного преобразователя вставляется в держатель зажима и скрепляется с плунжером

Если по какой-то причине держатель измерительного преобразователя не был установлен или был снят, обратитесь к *Рис.* 17 ниже и снова установите держатель следующим образом:

- Надвиньте держатель на верх измерительного преобразователя так, чтобы круглые пазы в врехней части боковых стенок измерительного преобразователя точно совпали с заполненными отверстиями держателя измерительного преобразователя.
- Завинтите установочные винты с внутренним шестигранником со стороны держателя измерительного преобразователя в отверстия измерительного преобразователя. Эти винты зафиксируют держатель на месте.

Рис. 17: Узел измерительного преобразователя

2.5.5 Установка измерительных преобразователей

Чтобы установить измерительные преобразователи в монтажный кронштейн, выполните следующие шаги:

- 1. При необходимости ослабьте винт с рифленой головкой на подвижном зажиме измерительного преобразователя, чтобы была возможна осевая корректировка положения.
- 2. Обратите внимание, что стационарный зажим измерительного преобразователя установлен на нулевую отметку на шкале. Установите передвижной зажим измерительного преобразователя таким образом, чтобы он совместился с отметкой на градуированной шкале кронштейна, которая соответствует расчетному расстоянию между измерительными преобразователями. Измерительные отметки должны читаться на боковой стороне зажима измерительного преобразователя, указанной стрелками. Обычно следует установить держатель слева в нулевое положение, а другой держатель - на нужном расстоянии.

Рис. 18: Фиксация крепления на трубе

- Примечание: Требуемое расстояние между измерительными преобразователями меняется в зависимости от многих факторов. Приложение (APP) в планшете автоматически рассчитывает расстояние между измерительными преобразователями. (см. "Просмотр расстояния между измерительными преобразователями" на стр. 73).
 - **3.** Затяните винт с рифленой головкой, чтобы зафиксировать на месте передвижной зажим измерительного преобразователя, соблюдая осторожность, чтобы не нарушить заданное осевое положение.

2.5.5 Установка измерительных преобразователей (продолжение)

4. Переведите оба кулачковых упора в нагруженное положение, чтобы держатели зажимов находились в их наиболее удаленном от трубы радиальном положении (см. *Puc. 19* ниже).

Рис. 19: Нагруженные кулачковые упоры

- 5. Нанесите предоставленное связующее вещество на обе поверхности измерительного преобразователя (см. Рис. 20 ниже). Связующее вещество заполняет все воздушные зазоры между измерительным преобразователем и трубой, чтобы обеспечить однородный тракт прохождения акустического сигнала. Трубы с внешним диаметром до 14 дюймов не требуют нанесения связующего вещества в показанных красных зонах; в случае труб с наружным диаметром >14 дюймов покройте связующим веществом всю поверхность.
- Примечание: *Не рекомендуется использовать смазку на водной основе в* качестве связующего вещества для нагреваемых или долговременных установок.

Рис. 20: Поверхность измерительного преобразователя со связующим веществом

2.5.5 Установка измерительных преобразователей (продолжение)

- 6. Задвигайте измерительный преобразователь, который уже зафиксирован в его держателе, в один из держателей зажимов крепежного приспособления, пока плунжер сверху держателя измерительного преобразователя не встанет на свое место в углублении на нижней часть держателя зажима (см. *Рис. 21* ниже).
- Важно: Кабельные разъемы на установленных измерительных преобразователях должны быть направлены в разные стороны относительно друг друга и к противоположным концам крепежного приспособления. Чтобы облегчить выполнение этого требования, на концевых деталях есть стрелки, помогающие обозначить направление кабельного разъема.

Рис. 21: Задвигание измерительного преобразователя

2.5.5 Установка измерительных преобразователей (продолжение)

7. Освободите кулачковые упоры на обоих зажимах измерительных преобразователей, чтобы придвинуть измерительные преобразователи к трубе для обеспечения того, чтобы связующее вещество полностью заполнило зазоры между поверхностями измерительных преобразователей и поверхностью трубы (см. *Puc. 22* ниже).

ОСТОРОЖНО! При освобождении кулачковых упоров их пружины могут стать причиной жесткого контакта между кулачком и поверхностью зажима. Любые предметы или части тела, попавшие между контактными поверхностями, могут получить повреждение или незначительную травму.

Рис. 22: Освобожденные кулачковые упоры

Важно: Перед тем как приступить к работе, вам следует определить требуемое расстояние между измерительными преобразователями (см. "Просмотр расстояния между измерительными преобразователями" на стр. 73).
2.5.6 Установки с четным и нечетным числом проходов

Измерительные преобразователи системы РТ900 могут быть установлены в одной из следующих конфигураций:

- С четным числом проходов Сигнал от одного из измерительных преобразователей пересекает поток жидкости четное число раз, прежде чем он будет принят другим измерительным преобразователем (для большинства применений рекомендуется два прохода).
- С нечетным числом проходов Сигнал от одного из измерительных преобразователей пересекает поток жидкости один раз или нечетное число раз, прежде чем он будет принят другим измерительным преобразователем.

2.5.6а Установки с четным числом проходов (Расстояние <305 мм/12 дюймов)

Стандартное крепежное приспособление РТ900 предназначено для установки *с четным числом проходов*, как показано на *Puc. 23* ниже. После монтажа крепежного приспособления на трубе обратитесь к *"Просмотр расстояния между измерительными преобразователями" на стр. 73*, чтобы отрегулировать расстояние между зажимами измерительных преобразователей до нужной величины по оси.

Рис. 23: Установка с четным числом проходов (вид сверху)

Важно:

Приведенная выше установка подразумевает расстояние между измерительными преобразователями <305 мм/12 дюймов. Что касается установок с четным числом проходов и расстояниями между измерительными преобразователями>305 мм/12 дюймов, то см. инструкции в "Установки с четным числом проходов (Расстояние >305 мм/12 дюймов)" на стр. 28.

2.5.6b Установки с нечетным числом проходов

Что касается установки *с нечетным числом проходов*, в составе крепежного приспособления требуется отдельная *скоба* (см. *Рис. 24* ниже).

Рис. 24: Установки с нечетным числом проходов

Важно: Крепежное приспособление должно быть установлено до установки скобы (см. "Монтаж крепежного приспособления РТ9" на стр. 9). Перед тем как приступить к работе, вам следует определить требуемое расстояние между измерительными преобразователями (см. "Просмотр расстояния между измерительными преобразователями" на стр. 73).

Для установки скобы выполните следующие шаги:

 Ослабьте винт скобы хотя бы на 25 мм/1 дюйм (весь ход для труб <50 мм/2 дюйма) и ослабьте J-образные крюки на всю длину (см. *Рис. 25* ниже).

Рис. 25: Ослабленные винт и Ј-образные крюки скобы

 Установите скобу сверху трубы (см. *Рис. 26* ниже). Если требуемое расстояние между измерительными преобразователями <305 мм/12 дюймов, цепь скобы должна размещаться в пределах крепежного приспособления, как показано.

Рис. 26: Установка скобы сверху трубы

3. Обмотайте цепи вокруг трубы и прикрепите их к кронштейну скобы, как показано на *Puc. 27* ниже.

Рис. 27: Закрепленные цепи скобы

 Поворачивайте скобу, пока она не окажется в горизонтальном положении на противоположной стороне трубы по отношению ранее установленному крепежному приспособлению, как показано на *Puc. 28* ниже.

Рис. 28: Вилка, повернутая в горизонтальное положение

5. Обеспечьте, чтобы верхние поверхности кронштейна скобы и кронштейнов крепежного приспособления располагались точно в одной и той же горизонтальной плоскости (см. *Рис. 28* выше). Установите стационарный зажим в крепежном приспособлении на ноль на шкале.

Примечание: Если требуемое осевое расстояние составляет 305-375 мм/12 дюймов-14,8 дюйма, установите стационарный зажим на отметке шкалы 100 мм/4 дюйма вместо нуля.

- 6. Направьте ось скобы следующим образом:
 - Расстояние >305 мм/12 дюймов (в качестве примера используется 435 мм/17,13 дюйма): Отмерьте требуемое расстояние 435 мм/17,13 дюйма от края стационарного зажима до отмеченной линии на скобе (см. *Puc. 29* ниже).

Рис. 29: Скоба размещается на расстоянии 435 мм/17,13 дюйма

Расстояние <305 мм (в качестве примера используется 120 мм/4,72 дюйма): Отмерьте требуемое расстояние 120 мм/4,72 дюйма от края стационарного зажима до отмеченной линии на скобе (см. *Рис. 30* ниже).

Рис. 30: Скоба размещается на расстоянии 120 мм/4,72 дюйма

- 2.5.6b Установки с нечетным числом проходов (продолжение)
 - 7. Затяните гайки для закрепления скобы на трубе (см. Рис. 31 ниже).

Рис. 31: Закрепление скобы

8. Ослабьте винт скобы. Затем нанесите связующее вещество на поверхность измерительного преобразователя и вставьте измерительный преобразователь в скобу, как показано на *Puc. 32* ниже.

Рис. 32: Вставьте измерительный преобразователь в скобу

9. Затягивайте винт скобы, пока измерительный преобразователь не войдет в плотный контакт с трубой. Ваша законченная установка с нечетным числом проходов должна выглядеть так, как на *Puc. 33* ниже.

Рис. 33: Установка с нечетным числом проходов (вид сверху)

2.5.6с Установки с четным числом проходов (Расстояние >305 мм/12 дюймов)

Что касается установки *с четным числом проходов* с расстоянием между измерительными преобразователями >305 мм/12 дюймов, в составе крепежного приспособления требуется отедельная *скоба* (см. *Рис. 34* ниже).

Рис. 34: Вилка для четного числа проходов при S>305 мм/12 дюймов

Важно: Крепежное приспособление должно быть установлено до установки скобы (см. "Монтаж крепежного приспособления РТ9" на стр. 9). Перед тем как приступить к работе, вам следует определить требуемое расстояние между измерительными преобразователями (см. "Просмотр расстояния между измерительными преобразователями" на стр. 73).

Для установки скобы выполните следующие шаги:

 Ослабьте винт скобы хотя бы на 25 мм/1 дюйм (весь ход для труб <50 мм/2 дюйма) и ослабьте J-образные крюки на всю длину (см. *Рис. 25* ниже).

Рис. 35: Ослабленные винт и Ј-образные крюки скобы

2.5.6с Установки с четным числом проходов (Расстояние >305 мм/12 дюймов) (продолжение)

 Установите скобу сверху трубы (см. *Рис. 36* ниже). Если требуемое расстояние между измерительными преобразователями <305 мм/12 дюймов, цепь скобы должна размещаться в пределах крепежного приспособления, как показано.

Рис. 36: Установка скобы сверху трубы

3. Обмотайте цепи вокруг трубы и прикрепите их кронштейну скобы, как показано на *Puc. 37* ниже.

Рис. 37: Закрепленные цепи скобы

- 2.5.6с Установки с четным числом проходов (Расстояние >305 мм/12 дюймов) (продолжение)
 - **4.** Поворачивайте скобу, пока она не окажется в горизонтальном положении на той же стороне трубы, что и ранее установленное крепежное приспособление, как показано на *Puc. 38* ниже.

Рис. 38: Вилка, повернутая в горизонтальное положение

5. Обеспечьте, чтобы верхние поверхности кронштейна скобы и кронштейна крепежного приспособления располагались точно в одной и той же горизонтальной плоскости (см. *Puc. 38* выше).

2.5.6с Установки с четным числом проходов (Расстояние >305 мм/12 дюймов) (продолжение)

6. Установите стационарный зажим в крепежном приспособлении на ноль на шкале. В качестве примера, если требуемое расстояние между измерительными преобразователями составляет 435 мм/17,13 дюйма, отмерьте требуемые 435 мм/17,13 дюйма от края стационарного зажима до отмеченной линии на скобе (см. *Puc. 39* ниже).

Рис. 39: Скоба размещается на расстоянии 435 мм/17,13 дюйма

7. Затяните гайки для закрепления скобы на трубе (см. Рис. 40 ниже).

Рис. 40: Закрепление скобы

- 2.5.6с Установки с четным числом проходов (Расстояние >305 мм/12 дюймов) (продолжение)
 - 8. Ослабьте винт скобы. Затем нанесите связующее вещество на поверхность измерительного преобразователя и вставьте измерительный преобразователь в скобу, как показано на *Puc. 41* ниже.

Рис. 41: Вставьте измерительный преобразователь в скобу

9. Затягивайте винт скобы, пока измерительный преобразователь не войдет в плотный контакт с трубой. Ваша законченная установка с нечетным числом проходов должна выглядеть так, как на *Puc. 42* ниже.

Рис. 42: Законченная установка (вид сверху)

2.6 Выполнение электрических соединений

Перед снятием измерений с помощью РТ900 вам следует выполнить все кабельные подключения к передатчику. Чтобы смонтировать проводку передатчика, выполните действия из следующих разделов:

- Подключение сетевого питания (см. стр. 33)
- Подключение измерительных преобразователей (см. стр. 35)
- Подключение цифрового выхода (см. стр. 36)
- Подключение аналоговых входов и выхода (см. стр. 37)
- Использование USB-порта (см. стр. 38)
- Использование беспроводного интерфейса Bluetooth (см. стр. 38)

Примечание: Для работы в базовом режиме нужно подключить только кабели измерительных преобразователей. Подключения ввода/вывода требуются, только если вы намереваетесь использовать эти функции.

После того как проводка РТ900 будет полностью смонтирована, переходите к Главе 3 *Начальная настройка*, чтобы сконфигурировать счетчик для работы.

2.6.1 Подключение сетевого питания

Пример этикетки передатчика РТ900 показан на *Рис. 43* ниже. Обеспечьте подачу питания на передатчик только указанным на этикетке напряжением.

Рис. 43: Этикетка передатчика РТ900

2.6.1 Подключение сетевого питания (продолжение)

ПРЕДУПРЕЖДЕНИЕ! Для обеспечения безопасной эксплуатации систему РТ900 следует устанавливать и эксплуатировать в соответствии с описанием в данном руководстве. Также необходимо следовать всем действующим местным нормам и правилам техники безопасности, предусмотренным при монтаже электрического оборудования в вашей зоне. РТ900 и измерительные преобразователи предназначены для использования только в местах общего назначения.

Система РТ900 питается либо от монтируемого на стене вставного модуля с напряжением 100-240 В перем. тока, либо от ионно-литиевой высокоэнергетической перезаряжаемой интеллектуальной аккумуляторной батареи. В любом случае следует подключить шнур питания к разъему питания (см. *Рис. 44* ниже).

В нормальном режиме работы РТ900 может работать с аккумуляторной батареей в передатчике. Когда вы получаете систему РТ900 аккумуляторная батарея заряжена неполностью. Чтобы зарядить аккумуляторную батарею, следует использовать внешний адаптер питания с входным номиналом 100-240 В перем. тока и выходным номиналом 12 В пост. тока. При подключении к передатчику адаптера питания переменного тока светодиод начнет мигать, что будет означать, что батарея заряжается. Когда светодиод батареи постоянно включен, это указывает, что батарея полностью заряжена. Когда внешний адаптер питания удален, светодиод батареи будет выключен.

Рис. 44: Подключение питания передатчика (справа) ПРЕДУПРЕЖДЕНИЕ! Чтобы обеспечить безопасную эксплуатацию, не включайте РТ900, пока аккумуляторная батарея заряжается внешним адаптером питания, подключенным к напряжению сети более 150 В перем. тока. Если в этой ситуации РТ900 включен, ни в коем случае не прикасайтесь к разъемам измерительных преобразователей.

2.6.2 Подключение измерительных преобразователей

Чтобы подключить измерительные преобразователи, см. *Puc.* 45 ниже и действуйте следующим образом:

- **1.** Подсоедините кабели от каждого из измерительных преобразователей к передатчику:
 - **а.** Подключите кабель измерительного преобразователя с обозначением **UP** на кабельном разъеме к разъему передатчика, обозначенному **UP**.
 - **b.** Подключите кабель измерительного преобразователя с обозначением **DN** на кабельном разъеме к разъему передатчика, обозначенному **DN**.
- 2. Если ваш передатчик сконфигурирован для двух каналов, подключите вторую пару измерительных преобразователей, повторив описанный выше шаг.
- 3. Правильно сконфигурируйте передатчик для надлежащей работы с конкретным типом вашего измерительного преобразователя. Инструкции см. в "Программирование параметров измерительных преобразователей" на стр. 67.
- **Важно:** Обязательно ровно вставляйте кабельные разъемы в разъемы передатчика во избежание повреждения разъемов.

Рис. 45: Подключения измерительного преобразователя (снизу)

2.6.3 Подключение цифрового выхода

В системе РТ900 предусмотрен один цифровой выход RS485/Modbus, а также поддерживаются цифровой *частотно/импульсный* выход и вход *строба сумматора/управления*. Подключите цифровой выход так, как показано на *Рис. 46* ниже (см. кабель справа). Номера контактов разъема и цветовой код для стандартного кабеля ввода/вывода показаны на *Таблица 1* ниже.

the second second second the second sec				
Подключение	№ контакта	Цвет	Описание	
RS484-	1	Чёрный	RS485/Modbus, отрицательный	
RS485+	2	Красный	RS485/Modbus, положительный	
RS485 COM	3	Зеленый	RS485/Modbus, общий	
DIO	4	Белый	Цифровой ввод/вывод, положительный	
DRTN	5	Желтый	Цифровой ввод/вывод, обратный провод	
SHD	6	Серебряный	Экран кабеля	

Таблица 1: Схема соединений кабеля DIO (цифровой ввод/вывод)

Рис. 46: Подключения ввода/вывода передатчика (правая сторона)

2.6.4 Подключение аналоговых входов и выхода

Система РТ900 обеспечивает аналоговый токовый выход 0/4-20 мА и два аналоговых входа 4-20 мА с коммутируемой подачей 16 В для датчиков температуры с питанием от токовой петли. Подключите аналоговые входы и выход так, как показано на *Рисунок 46 на странице 36* (см. кабель слева). Номера контактов разъема и цветовой код для стандартного кабеля ввода/вывода показаны на *Таблица 2* ниже.

Подключение	№ контакта	Цвет	Описание
Aout+	1	Красный	4-20 мА, ВЫХОД
Aout-	2	Чёрный	4-20 мА, ОБРАТНЫЙ ПРОВОД
16VDC	3	Синий	+16 В пост. тока, ВЫХОД
ARTN	4	Желтый	АНАЛОГОВЫЕ ВХОДЫ, ОБРАТНЫЙ ПРОВОД
AIN1	5	Оранжевый	АНАЛОГОВЫЙ ВХОД 1
AIN2	6	Зеленый	АНАЛОГОВЫЙ ВХОД 2
SHD	7	Серебряный	Экран кабеля

Таблица 2: Схема соединений кабеля AIO (аналоговый ввод/вывод)

Важно: Аналоговый выход работает в активном режиме. Не подавайте питание 24 В в эту цепь, поскольку она получает питание от передатчика.

2.6.5 Подключение энергетических кабелей

Порт AIO (аналоговый ввод/вывод) обычно используется для подключения пары энергетических кабелей, позволяющих выполнять измерения энергии (см. *Рис. 47* ниже).

2.6.6 Использование USB-порта

В системе РТ900 предусмотрен один полноскоростной интерфейс USB 2.0. Розетка представляет собой разъем micro-USB Типа В, как показано на *Рис. 48* ниже. Журналы регистрации данных и другую информацию из встроенной памяти передатчика можно загружать в ПК через порт USB. Кроме того, прямо через порт USB можно изменять файлы конфигурации передатчика.

Рис. 48: Разъем USB передатчика (левая сторона)

2.6.7 Использование беспроводного интерфейса Bluetooth

Система РТ900 поступает оборудованной внутренним приемопередатчиком Bluetooth, который обеспечивает беспроводную связь между передатчиком и планшетами с поддержкой интерфейса Bluetooth. В таком случае передатчик можно сконфигурировать при помощи прикладного программного обеспечения системы РТ900 АРР, установленного в планшете, подключенном через беспроводной интерфейс Bluetooth. Для получения дополнительной информации о приложении (АРР) см. Главу 3 Начальная настройка."

2.7 Обращение с батареями системы РТ900

Система РТ900 поступает с автономной встроенной перезаряжаемой аккумуляторной батареей для поддержки мобильности. Для оптимизации рабочего процесса эти аккумуляторные батареи требуют минимального обслуживания.

ОСТОРОЖНО! Используйте только одобренные компанией GE батареи и настольные зарядные устройства, конструкция которых максимально продлевает срок службы батарей. Использование других батарей или зарядных устройств аннулирует гарантию и может привести к повреждению оборудования.

ОСТОРОЖНО! Для обеспечения соответствия СЕ система РТ900 классифицируется как устройство *с питанием от батареи* и не должна работать с подключенным адаптером питания переменного тока.

2.7.1 Зарядка и хранение батарей

При получении системы РТ900 вам нужно будет вначале зарядить батареи. Кроме того, батареи могут потребовать перезарядки, если они не использовались в течение длительного времени. Батареи следует заряжать в течение периода до *3 часов*, чтобы перевести их из состояния 0% (полностью разряжены) до состояния 100% (полностью заряжены). Полностью заряженные батареи обеспечивают *18-20 часов* непрерывной работы. Внутренний аккумуляторный вольтметр указывает оставшуюся в батарее энергию.

Чтобы зарядить батарею, просто вставьте шнур адаптера питания переменного тока в гнездо питания (см. *Рисунок 44 на странице 34*) и убедитесь, что аккумуляторная батарея установлена в передатчик (см. *"Установка аккумуляторной батареи в передатчик" на стр. 6*). Независимо от того, включено или выключено система РТ900, когда адаптер питания переменного тока подключается к сетевому напряжению, внутреннее зарядное устройство передатчика автоматически заряжает батарею. Светодиоды батареи (см. *Рис. 49* ниже) указывают состояние зарядки батареи.

Рис. 49: Светодиоды состояния зарядки батареи

Для обеспечения оптимальной продолжительности работы заряжайте батареи только при температурах от 32°F до 113°F (от 0°C до 45°C). В ином случае батареи не будут заряжаться должным образом и продолжительность их работы будет значительно меньше. Храните батареи при температурах от -4°F до 122°F (от -20°C до 50°C). Рекомендуемый диапазон температур хранения от -4°F до 77°F (от -20°C до 25°C). Длительное хранение при температурах выше 104°F (40°C) может ухудшить рабочие характеристики батареи и сократить срок ее службы.

2.7.2 Замена батарей

ОСТОРОЖНО! Заменяйте батареи системы РТ900 только на указанные перезаряжаемые батареи. Батарея заряжается, даже если устройство **выключено**. Не пытайтесь повторно зарядить неперезаряжаемые батареи.

Чтобы заменить аккумуляторную батарею:

- 1. Снимите резиновый чехол с передатчика.
- 2. Откройте панель на задней стороне передатчика (см. Рис. 50 ниже).
- 3. Отсоедините и выньте старую аккумуляторную батарею.
- 4. Установите новую аккумуляторную батарею.
- 5. Поставьте на место панель и резиновый чехол передатчика.

Рис. 50: Местонахождение панели батареи

2.7.3 Утилизация батарей

ОСТОРОЖНО! Никогда не уничтожайте батареи методом сжигания. Не пытайтесь разобрать батареи или замкнуть их накоротко. По соображениям безопасности запрещается выполнять манипуляции с поврежденной или протекающей батареей.

ОСТОРОЖНО! Обязательно утилизируйте свои батареи надлежащим образом. На некоторых территориях выбрасывание батарей в хозяйственный или бытовой мусор может быть запрещено. По поводу вариантов безопасной утилизации обратитесь в ближайший к вам сервисный центр компании GE.

2.8 Включение и выключение

Чтобы работать с системой РТ900, шнур питания должен быть подключен к сетевому напряжению, либо аккумуляторная батарея должна быть заряжена так, как это описано в предыдущих разделах.

ОСТОРОЖНО! Для обеспечения соответствия СЕ система РТ900 классифицируется как устройство *с питанием от батареи* и не должна работать с подключенным адаптером питания переменного тока. Для обеспечения соответствия сертификации СЕ отсоедините адаптер питания переменного тока перед работой с системой РТ900.

ПРЕДУПРЕЖДЕНИЕ! Если система РТ900 не пройдет испытание с резервной батареей, вам следует отправить устройство обратно на завод для замены батареи. Обязательно держите батарею заряженной, пока не будете готовы отправить устройство обратно на завод. Перед отправкой распечатайте все *регистрационные данные или данные участка*, либо перенесите их в свой ПК. Никогда не уничтожайте батарею методом сжигания. Не пытайтесь разобрать аккумуляторную батарею или замкнуть ее накоротко. По соображениям безопасности запрещается выполнять манипуляции с поврежденной или протекающей батареей.

2.8 Включение и выключение (продолжение)

Чтобы включить систему РТ900, нажимайте на кнопку включения/выключения питания на верхней панели передатчика (см. *Рис. 51* ниже) в течение примерно 3 секунд. Сначала будет непрерывно гореть только зеленый светодиод питания, указывая включение. Однако после полного включения питания системы все светодиоды окажутся непрерывно включенными.

Чтобы выключить систему РТ900, нажимайте на кнопку

включения/выключения питания на верхней панели передатчика (см. *Рис. 51* ниже) в течение примерно *3 секунд*. Все светодиоды **выключатся**.

Рис. 51: Кнопка питания передатчика (сверху)

2.9 Светодиодные индикаторы системы РТ900

Четыре цветных светодиода на передней панели передатчика РТ900 (см. *Рис. 52* ниже) дают информацию по состоянию счетчика в режиме реального времени. Подробности см. на следующей странице.

Рис. 52: Светодиоды передатчика (спереди)

2.9.1 Светодиод питания

- Непрерывный зеленый свет, когда счетчик включен
- Нет света, когда счетчик выключен
- *Мигающий зеленый свет*, когда счетчик находится в энергосберегающем режиме

2.9.2 Светодиод Bluetooth

- *Непрерывный зеленый свет*, когда Bluetooth[®] подключен к передатчику
- *Мигающий синий свет*, когда Bluetooth[®] находится в состоянии *щелчка кнопки*, чтобы подтвердить процесс подсоединения
- Непрерывный красный свет, когда счетчик включен и Bluetooth[®] бездействует или подсоединен к передатчику
- *Нет света*, когда Bluetooth[®] находится в режиме конфигурирования

2.9.3 Светодиоды состояния

- *Непрерывный зеленый свет*, когда счетчик находится в режиме измерения без ошибок
- Красный свет, когда возникает ошибка, в то время как счетчик находится в режиме измерения
- Нет света, когда счетчик находится в режиме конфигурирования

2.9.4 Светодиод батареи

- Непрерывный зеленый свет, когда батарея полностью заряжена (>99%), но адаптер переменного тока подключен
- Непрерывный зеленый свет, когда уровень заряда батареи высокий (>20%), но адаптер переменного тока не подключен
- Мигающий зеленый свет, когда батарея не полностью заряжена, но заряжается при помощи подключенного адаптера переменного тока
- *Красный свет*, когда уровень заряда батареи низкий (≤20%) и ее нужно немедленно зарядить
- *Мигающий красный свет*, когда уровень заряда батареи низкий (≤10%) и счетчик скоро останется без электропитания
- *Свет выключен*, когда счетчик **включен**, но батарея полностью разряжена и адаптер переменного тока подключен

[эта страница намеренно оставлена без содержания]

Глава 3. Начальная настройка

3.1 Введение

Эта глава содержит инструкции по программированию расходомера РТ900 через приложение (АРР) планшета перед началом работы.

3.2 Зарядка передатчика РТ900 и планшета

Перед тем как приступить к настройке, убедитесь, что как *передатчик PT900*, так и *планшет* полностью заряжены. Адаптеры питания переменного тока поставляются в футляре для переноски. Если либо передатчик, либо планшет не включается после зарядки, обратитесь за помощью к своему представителю компании GE или зайдите на сайт <u>www.gemeasurement.com</u>.

3.3 Установка или обновление приложения (АРР) РТ900

Инструкции в следующих разделах объясняют порядок загрузки текущей версии АРР РТ900 и ее установки на планшет.

3.3.1 Проверка версии приложения (АРР)

Чтобы проверить версию приложения (APP), в данный момент установленного на вашем планшете, щелкните опцию About (Сведения о) в меню Help (Справка), чтобы открыть экран, аналогичный показанному на *Puc. 53* ниже. На этом экране отображается общая информация о системе PT900. Эта информация содержит: название модели, тип прибора, версию программного обеспечения и год авторского права на приложение (APP).

Рис. 53: Экран About (Сведения о)

3.3.2 Установка или обновление приложения Android РТ900

Обновите свое существующее приложение (APP) Android PT900 из одного из следующих мест:

- Google Play Store: Чтобы получить более новую версию APP из Google Play Store, найдите "*Transport PT900*" и установите его. Google Play Store является предпочтительным методом установки, поскольку обновления будут автоматически загружаться в ваш планшет вместе с последней версией приложения.
- **QR-код или веб-сайт GE**: Чтобы получить более новую версию APP, отсканируйте QR-код, показанный на *Puc. 54* ниже.

В качестве альтернативы, загрузите последнюю версию APP прямо с веб-сайта GE на следующем URL:

<u>https://www.gemeasurement.com/flow-measurement-control/ultrasonic-liquid/transport-pt900-portable-ultrasonic-flow-meter-liquids</u> <u>или</u> www.gemeasurement.com/transport.

• **SD-карта:** Чтобы получить более новую версию APP с SD-карты, вставьте SD-карту прямо в *планшет*. Затем выберите файл APK в папке SD.

3.3.3 Установка АРР планшета с SD-карты

Чтобы установить АРР, выполните следующие шаги:

1. Откройте папку "*My Files*" (Мои файлы) на экране планшета и выберите APP в папке SD (см. *Puc. 55* ниже).

Рис. 55: Папка "My Files" (Мои файлы)

2. В настройках планшета активируйте опцию "Unknown sources" (Неизвестные источники) только для этой установки (см. *Рис. 56* ниже).

Рис. 56: Настройки безопасности

3.3.3 Установка АРР планшета с SD-карты (продолжение)

- 3. Щелкните файл APK, и операционная система *Android* проверит контрольную сумму и сигнатуру этого файла. В зависимости от того, начальная ли это установка или установка обновления, вы увидите один из экранов, показанных на *Puc. 57* ниже. Щелкните INSTALL (УСТАНОВИТЬ), чтобы начать установку.
- **Примечание:** Если сигнатура файла не верифицирована, операционная система Android будет рассматривать APP как неопознанное APP.

My Files	stor Device storag	apk TransPort Install an update to existing data will ni will have access to	t PT900 o this existing application? Your ot be lost. The updated application
💽 🎦 Trans	sPort PT900	NEW	
Correction C	or delete the contents of your USB sto ess to protected storage ESS th settings to ENetooth devices numing apps system settings	se This update doe	is not require any new permissions.
Can	cel Install	CANCEL	INSTALL

Рис. 57: Экраны начальной установки (слева) и установки обновления (справа)

3.4 Подключение планшета к передатчику

Чтобы установить АРР и соединить его с передатчиком РТ900, выполните следующие шаги:

1. После того как APP будет загружено в ваш планшет, найдите значок, показанный на *Puc. 58* ниже, в *APPS* планшета и щелкните его, чтобы запустить это APP.

Рис. 58: Значок АРР РТ900

2. Пока приложение (APP) загружается, вы должны видеть экран инициализации, показанный на *Puc. 59* ниже.

Рис. 59: Экран загрузки приложения (АРР)

3. На экране, показанном на *Рис. 60* ниже, выберите нужный язык интерфейса приложения (АРР) и щелкните **ОК**.

LANGUAGE		
English	· · · · · · · · · · · · · · · · · · ·	
中文		
Deutsch		
日本語		
Italiano		
Français		
Nederlands		
한국어		
ок	CANCEL	

Рис. 60: Варианты выбора языка интерфейса приложения РТ900

 На экране Лицензионного соглашения (см. Рис. 61 ниже) прочитайте соглашение, а затем щелкните AGREE (СОГЛАСЕН), чтобы продолжить установку приложения, или щелкните CANCEL (ОТМЕНА), чтобы остановить установку приложения.

Рис. 61: Лицензионное соглашение приложения РТ900

5. На экране *регистрации* (см. *Рис. 62* ниже) щелкните OK, чтобы зарегистрировать свой расходомер РТ900, или щелкните CANCEL (ОТМЕНА), чтобы пропустить регистрацию.

Примечание: Если вы пропустите регистрацию, этот экран будет всплывать в качестве напоминания при первых пяти запусках приложения, а затем больше никогда не появится.

Рис. 62: Регистрация РТ900

6. По окончании загрузки приложения (АРР) отображается принимаемый по умолчанию список *передатчиков*. Во время начальной установки этот список пуст (см. *Puc. 64* ниже).

Рис. 63: Начальный список передатчиков

- 7. Чтобы подключить новый передатчик РТ900, щелкните SCAN (сканировать) (см. красную стрелку на *Puc. 64* ниже), и приложение будет искать доступные передатчики через Bluetooth.
- 8. По окончании сканирования все найденные новые передатчики будут перечислены в разделе AVAILABLE DEVICES (ДОСТУПНЫЕ УСТРОЙСТВА) экрана планшета (см. красную стрелку на *Puc. 64* ниже). Щелкните свой передатчик, чтобы соединить его с планшетом через Bluetooth.
- Важно: Несмотря на то, что интерфейс Bluetooth установлен во многих устройствах, приложение РТ900 написано так, чтобы отфильтровывать все устройства, кроме тех, чьи имена имеют вид РТ900-Мхххххххх.

Рис. 64: Список доступных устройств

Примечание: *На* Рисунок 64 на странице 52 ваш передатчик РТ900 обозначен серийным номером на его этикетке (см. Рис. 65 ниже).

Рис. 65: Серийный номер передатчика

- 9. В процессе подключения функции безопасности РТ900 требуют, чтобы пользователь подтвердил соединение (см. *Puc. 66* ниже). Когда на планшете появится *Bluetooth pairing request* (Запрос подключения по Bluetooth) (игнорируйте случайный общий ключ), для продолжения щелкните **OK**. Затем убедитесь в том, что синий светодиод на передатчике мигает и щелкните кнопку электропитания передатчика.
- Важно: Подключение завершается только после его подтверждения как на планшете, так и на передатчике. В ином случае подключение не будет выполнено.

Рис. 66: Подтверждение подключения

10. Щелкните кнопку ВАСК (НАЗАД) (показана справа) на планшете с операционной системой Android, чтобы вернуться в приложение РТ900. Затем выберите свой передатчик РТ900 в списке TRANSMITTERS PAIRED

(СПАРЕННЫЕ ПЕРЕДАТЧИКИ) и щелкните **NEXT** (ДАЛЕЕ), чтобы открыть *главное меню*. Например, на *Puc.* 67 ниже из списка выбран передатчик **PT900-M09160025**.

	TRANSMITTERS PAIRED	
PT900-H09160025		×
WORK OFFLINE		
Select your paired transm offine.	nitler from the list above or	choose to work
SCAN		NDT

Рис. 67: Список подключенных передатчиков

Примечание: При желании вы можете имитировать работу приложения без подключения к передатчику. Для этого щелкните опцию WORK OFFLINE (PAEOTATЬ ABTOHOMHO), показанную на Рис. 67 выше.

3.5 Использование главного меню и слайд-меню приложения

3.5.1 Главное меню

После успешной установки приложения на планшете и подключения передатчика РТ900 к планшету начальным экраном приложения будет *главное меню*, показанное на *Puc. 68* ниже.

Рис. 68: Экран главного меню приложения

Опции, имеющиеся в главном меню приложения:

- **PROGRAM** (ПРОГРАММИРОВАНИЕ), используется для выбора и конфигурирования канала.
- MEASURE (ИЗМЕРЕНИЕ), используется для просмотра измерений в реальном времени, сообщений об ошибках и диагностической информации.
- LOGS (ЖУРНАЛЫ РЕГИСТРАЦИИ), используется для настройки файлов журналов регистрации и управления записями, хранящимися в передатчике РТ900.

3.5.2 Слайд-меню

В качестве альтернативы *главному меню*, о котором говорилось в предыдущем разделе, можно использовать *слайд-меню* (выезжающее меню), показанное на *Рис.* 69 ниже.

Рис. 69: Экран слайд-меню приложения

Чтобы получить доступ к *слайд-меню*, либо щелкните значок **е** в левом верхнем углу экрана, либо проведите пальцем по экрану от левого края вправо. Опции, имеющиеся в слайд-меню приложения:

- **PROGRAM** (ПРОГРАММИРОВАНИЕ), используется для выбора и конфигурирования канала.
- MEASURE (ИЗМЕРЕНИЕ), используется для просмотра измерений в реальном времени, сообщений об ошибках и диагностической информации.
- LOGS (ЖУРНАЛЫ РЕГИСТРАЦИИ), используется для настройки файлов журналов регистрации и управления записями, хранящимися в передатчике РТ900.
- **HELP** (СПРАВКА), используется для получения доступа к подробной информации и инструкциям по системе РТ900.
Глава 4. Программирование

4.1 Конфигурирование единиц измерения

Меню UNITS OF MEASUREMENT (ЕДИНИЦЫ ИЗМЕРЕНИЯ) (см. *Puc.* 70 ниже) позволяет пользователю выбрать единицы измерения, отображаемые РТ900 на всех экранах.

Примечание: Поскольку вариант выбора Metric (*Метрических*) или English (Английских) единиц отражается на всех других экранах меню, это меню следует программировать в первую очередь.

UNITS OF MEASUREMENT		A 8.4
Calant up in units of many grama		
select your units of measureme	nc.	
Metric English		
Velocity	Density	
m/s	kg/m³	
Acceleration	Temperature	
m/s ^z	*C	
Custom Entholpy		
kJ/kg/*C		
Energy	Power	
kWh 🖌	kCal/s	×
Standard Volumetric	Actual Volumetric	
SL/s 🗸	m³/ħ	×
Diameter	Moss	,
mm ~	kg/s	×
Totolizer		
Totalizer-Actual V 🗸	m,	×
Batch Totalizer Time		
s ~		
OK	CANCEL	

Рис. 70: Меню единиц измерения

4.1 Конфигурирование единиц измерения (продолжение)

В боковом меню приложения щелкните Unit Options (Опции единиц), зайдя в меню PROGRAM (ПРОГРАММИРОВАНИЕ). При этом откроется меню UNITS OF MEASUREMENT (ЕДИНИЦЫ ИЗМЕРЕНИЯ), показанное на *Рисунок 70 на странице 57*.

Чтобы запрограммировать ЕДИНИЦЫ ИЗМЕРЕНИЯ, выполните следующие шаги:

- 1. Передвиньте ползунковый переключатель в верхней части меню либо к Metric (Метрические), либо к English (Английские), чтобы выбрать нужную глобальную систему единиц измерения РТ900.
- На основании вышеупомянутого выбора единицы для всех измеряемых РТ900 параметров будут автоматически заполняться принимаемыми по умолчанию единицами.
 - **а.** Для некоторых параметров имеется только один вариант выбора единиц измерения. Текстовые окна для этих параметров показаны серым цветом, и принимаемые по умолчанию единицы нельзя изменить.
 - **b.** Для некоторых параметров имеется несколько вариантов выбора единиц измерения. Текстовые окна для этих параметров активны, и принимаемые по умолчанию единицы можно менять, открывая выпадающий список и выбирая нужные единицы.
- По окончании программирования щелкните кнопку OK, чтобы сохранить свои выбранные варианты, или щелкните CANCEL (ОТМЕНА), чтобы отказаться от изменений.

4.2 Конфигурирование канала

Выбор опции **PROGRAM>Channel** (ПРОГРАММИРОВАНИЕ>канал) на экране приложения (см. *Puc. 71* ниже) позволяет настроить канал для измерения расхода. РТ900 поддерживает до двух каналов: канал **1** и канал **2**. Они программируются индивидуально, а запрограммированную информацию можно сохранить в файле **PRESETS** (ПРЕДВАРИТЕЛЬНЫЕ УСТАНОВКИ).

Рис. 71: Меню программирования каналов

Для полного конфигурирования канала должны быть запрограммированы следующие меню:

- **PIPE** (ТРУБА) (см. "Программирование меню PIPE (ТРУБА)" на *стр.* 61)
- FLUID (ТЕКУЧАЯ СРЕДА) (см. "Программирование меню FLUID (ТЕКУЧАЯ СРЕДА)" на стр. 64)
- **TRANSDUCERS** (ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ) (см. *"Программирование меню TRANSDUCERS (ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ)" на стр.* 66)
- **PLACEMENT** (УСТАНОВКА) (см. "Программирование меню *PLACEMENT* (УСТАНОВКА)" на стр. 72)

4.2 Конфигурирование канала (продолжение)

Используя Канал 1 в качестве примера, обратитесь к *Рис.* 72 ниже и выполните следующие шаги:

- 1. Измените состояние канала с Off (Выключен) на On (Включен). При этом будет активирован не только канал, будут также активированы две кнопки программирования.
- Если другой канал уже был запрограммирован, щелкните кнопку СОРУ СН (КОПИРОВАТЬ КАН), чтобы скопировать все данные программирования из другого канала в текущий. В этом примере данные Канала 2 будут копироваться в Канал 1 для упрощения программирования.
- 3. После того как текущий канал будет запрограммирован, щелкните кнопку PRESETS (ПРЕДВАРИТЕЛЬНЫЕ УСТАНОВКИ), ?чтобы сохранить данные программирования в файле, хранящемся в памяти передатчика РТ900. Эти файлы данных участка можно загрузить в АРР (приложение) по каналу USB, когда расходомер РТ900 будет в следующий раз установлен на том же участке.

	AM (ONL	INE MODE)	СОРҮ СН	PRESETS
Channel 1	Off		On	

Рис. 72: Программирование Канала 1

4.3 Программирование меню РІРЕ (ТРУБА)

Меню **PIPE** (ТРУБА) позволяет пользователю указать все параметры трубы, требуемые для обеспечения точных ультразвуковых измерений расхода. Пример этого меню показан на *Puc.* 73 ниже. См. следующие подразделы по поводу опций, доступных при программировании различных параметров трубы.

Примечание: Единицы измерения, используемые для всех параметров трубы в этих меню, зависят от выбранных в меню UNITS OF MEASUREMENT (ЕДИНИЦЫ ИЗМЕРЕНИЯ) вариантов.

	AM (ONLINE MOI	DE) СОРУ СН	PRESETS
Channel 1	off 🧲	On On	
PIPE	FLUID	TRANSDUCERS	PLACEMENT
PIPE MATER Steel (Car PIPE STAND	iAL bon) 💙	PIPE SOUND SPEED	m/s
ANSI NOMINAL 1/8	~	SCHEDULE 40	~
OUTER DIA 10.287 LINING	METER mm	WALL THICKNESS	m
Yes LINING MAT Other	erial ~	LINING SOUND SPEI	eD m/s
LINING THR	mm		

Рис. 73: Меню РІРЕ (ТРУБА)

4.3.1 Материалы труб

В выпадающем списке материалов труб, поддерживаемом передатчиком РТ900, выберите материал трубы для своего применения. Для удобства рассмотрения некоторые из имеющихся опций показаны в *Таблица 3* ниже.

Материал	Описание	Материал	Описание
Other (Другое)	Любой материал	Glass (Pyrex) (Стекло (пирекс))	Pyrex glass (Стекло пирекс)
Steel (Carbon) (Сталь (углеродистая))	Углеродистая сталь	Glass (Flint) (Стекло (флинт))	Флинтглас
Steel (Stainless) (Сталь (нержавеющая))	Нержавеющая сталь	Glass (Crown) (Стекло (крон))	Кронглас
Iron (Duct) (Железо (ковкое))	Ковкое железо	Plastic (Nylon) (Пластик (нейлон))	Нейлон
Iron (Cast) (Чугун)	Чугун	Plastic (Polye) (Пластик (поли))	Полиэтилен
Copper (Медь)	Медь	Plastic (Polyp) (Пластик (полип))	Полипропилен
Aluminum (Алюминий)	Алюминий	Plastic (PVC) (Пластик (ПВХ))	Поливинилхлор ид
Brass (Латунь)	Латунь	Plastic (Acryl) (Пластик (акрил))	Акриловые пластики
30% Nickel (30% никель)	30% никелемедный сплав	Plastic (Glass) (Пластик (стекло))	Армированный стеклопластик
10% Nickel (10% никель)	10% никелемедный сплав		

Таблица 3: Материалы труб

Важно: На основании выбранного материала трубы автоматически вводится скорость распространения звука в трубе. Если для материала трубы выбрана опция OTHER (ДРУГОЕ), обязательно введите правильную скорость распространения звука в вашем специальном материале трубы.

4.3.2 Размеры трубы

Обязательно введите следующую информацию для своей трубы:

 Если PIPE MATERIAL (МАТЕРИАЛ ТРУБЫ) - сталь любого типа, а PIPE STANDARD (СТАНДАРТ ТРУБЫ) - ANSI, выберите в выпадающем списке NOMINAL (НОМИНАЛЬНЫЙ) размер и SCHEDULE (ТИПОРАЗМЕР).

Примечание: Если **МАТЕРИАЛ ТРУБЫ** не является сталью любого типа, вышеупомянутые опции меню недоступны.

- В окне OUTER DIAMETER (НАРУЖНЫЙ ДИАМЕТР) введите номинальный наружный диаметр трубы.
- В окне WALL THICKNESS (ТОЛЩИНА СТЕНКИ) введите толщину стенки трубы.

4.3.3 Футеровка трубы

Если вы ввели YES (ДА) в окне LINING (ФУТЕРОВКА), то для обеспечения точности измерений расхода следует запрограммировать LINING MATERIAL (МАТЕРИАЛ ФУТЕРОВКИ), LINING SOUND SPEED (СКОРОСТЬ РАСПРОСТРАНЕНИЯ ЗВУКА В ФУТЕРОВКЕ) и LINING THICKNESS (ТОЛЩИНА ФУТЕРОВКИ). В выпадающем списке футеровок труб, поддерживаемом передатчиком РТ900, выберите материал футеровки трубы для своего применения. Для удобства рассмотрения в *Таблица 4* ниже приведен перечень доступных опций.

Материал	Описание	Материал	Описание
Other (Другое)	Любой материал	Mortar (Цементный раствор)	Цементный раствор
Tar Ероху (Эпоксидная смола)	Эпоксидная смола	Rubber (Резина)	Резина
Pyrex glass (Стекло пирекс)	Стекло пирекс	Teflon (Тефлон)	Тефлон
Asbestos Cement (Асбоцемент)	Асбоцемент		

Таблица 4: Имеющиеся футеровки труб

Важно: На основании выбранного материала футеровки автоматически вводится скорость распространения звука в футеровке. Если для футеровки трубы выбрана опция OTHER (ДРУГОЕ), обязательно введите правильную скорость распространения звука в вашей специальной футеровке трубы.

Завершите программирование футеровки вводом параметра LINING THICKNESS (ТОЛЩИНА ФУТЕРОВКИ).

4.4 Программирование меню FLUID (ТЕКУЧАЯ СРЕДА)

Меню FLUID (ТЕКУЧАЯ СРЕДА) позволяет пользователю указать все параметры проходящей через трубу текучей среды, требуемые для обеспечения точных ультразвуковых измерений расхода. Пример этого меню показан на *Puc. 74* ниже. См. следующие подразделы по поводу опций, доступных при программировании различных параметров текучей среды.

Примечание: Единицы измерения, используемые для всех параметров текучей среды в этих меню, зависят от выбранных в меню UNITS OF MEASUREMENT (ЕДИНИЦЫ ИЗМЕРЕНИЯ) вариантов.

4.4 Программирование меню FLUID (ТЕКУЧАЯ СРЕДА) (продолжение)

Для программирования меню FLUID (ТЕКУЧАЯ СРЕДА) выполните следующие шаги:

- 1. TRACKING WINDOW (ОКНО ОТСЛЕЖИВАНИЯ) используется для детектирования приема сигнала, когда пользователь не уверен в скорости распространения звука в текучей среде. Установите TRACKING WINDOW в состояние On (Вкл) или Off (Выкл) (установкой по умолчанию является Off).
- 2. На основании установки **ОКНА ОТСЛЕЖИВАНИЯ** действуйте следующим образом:
 - а. Если TRACKING WINDOW (ОКНО ОТСЛЕЖИВАНИЯ) выключено (Off), сразу перейдите к шагу 3.
 - b. Если TRACKING WINDOW (ОКНО ОТСЛЕЖИВАНИЯ) включено (On), введите значения MAX SOUND SPEED (МАКС. СКОРОСТЬ ЗВУКА) и MIN SOUND SPEED (МИН. СКОРОСТЬ ЗВУКА) для вашего применения.
- 3. Выберите FLUID (ТЕКУЧАЯ СРЕДА) в выпадающем списке (см. *Таблица 5* ниже) и введите ожидаемую во время измерений расхода температуру (TEMPERATURE) текучей среды.
- 4. Если выбранная **ТЕКУЧАЯ СРЕДА** вода или имеет водную основу, скорость распространения звука (SOUND SPEED) является константой, которая автоматически вводится в окно SOUND SPEED.
- 5. Если вы выбрали OTHER (ДРУГОЕ) в качестве текучей среды (FLUID), автоматический ввод в окне SOUND SPEED (СКОРОСТЬ ЗВУКА) ?должен быть изменен пользователем на правильное значение.
- 6. Параметр KINEMATIC VISCOSITY (КИНЕМАТИЧЕСКАЯ ВЯЗКОСТЬ) текучей среды (см. документ GE 916-119) используется для расчета числа Рейнольдса, которое затем используется для расчета поправки Рейнольдса.
- 7. The AVERAGE FACTOR (СРЕДНИЙ КОЭФФИЦИЕНТ) это коэффициент, применяемый ко всем измерениям текущего канала при расчете среднего измерения для СН1 и СН2. Например, если внутренний диаметр (ID) трубы одинаковый для обоих каналов, а СРЕДНИЙ КОЭФФИЦИЕНТ для обоих каналов установлен в значение 0,5, тогда скорость потока для *Среднего канала* = 0,5 х СН1 + 0,5 х СН2.

Доступные типы текучей среды (FLUID) зависят от текущей установки для окна отслеживания (TRACKING WINDOW) (см. *Таблица 5* ниже).

Окно отслежив	ания выключено	Окно отслеживания включено
Other (Другое)	Lube Oil (Х200) (Смазочное масло)	Other (Другое)
Water (Вода)	Oil (Нефть)	Water (Вода)
Water/Glycol (Вода/гликоль)	Methanol (Метанол)	Water/Glycol (Вода/гликоль)
Sea Water (Морская вода)	Ethanol (Этанол)	Oil (Нефть)
Oil (22°С) (Нефть)	LN2 (-199°С) (Жидкий азот)	
Crude Oil (Сырая нефть)	Freon (R-12) (Фреон)	

Таблица 5: Доступные типы текучей среды

4.5 Программирование меню TRANSDUCERS (ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ)

Меню **TRANSDUCERS** (ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ) позволяет пользователю указать все параметры измерительных преобразователей, требуемые для обеспечения точных ультразвуковых измерений расхода. Пример этого меню показан на *Puc.* 75 ниже. См. следующие подразделы по поводу опций, доступных при программировании измерительных преобразователей.

Примечание: Единицы измерения, используемые для всех параметров измерительных преобразователей в этих меню, зависят от выбранных в меню UNITS OF MEASUREMENT (ЕДИНИЦЫ ИЗМЕРЕНИЯ) вариантов.

Рис. 75: Меню TRANSDUCERS (ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ)

4.5.1 Программирование параметров измерительных преобразователей

Чтобы запрограммировать параметры своих измерительных преобразователей, см. *Рисунок 75 на странице 66* и выполните следующие шаги:

1. Переведите переключатель типа измерительного преобразователя в положение либо Clamp-on (С фиксатором), либо Wetted (Смачиваемый), что относится к методу установки измерительных преобразователей на трубе. Типы измерительных преобразователей, пригодных для использования вместе с РТ900 см. в *Таблица 6* ниже.

Примечание: В Руководстве компании GE по установке измерительных преобразователей для вашей модели измерительного преобразователя приведена более подробная информация конфигурациях установки измерительных преобразователей.

Таблица 6: Имеющиеся измерительные преобразователи с фиксатором

Номер измерительного	Название модели измерительного	
преобразователя	преобразователя	
10	С-РТ-N/0,5 МГц	
11	С-РТ-N/2 МГц	
12	С-РТ-Н/0,5 МГц	
13	С-РТ-Н/1 МГц	
14	С-РТ-М/2 МГц	
15	С-РТ-Н/0,5 МГц	
16	С-РТ-Н/1 МГц	
17	С-РТ-Н/2 МГц	
23*	CF-LP-H/4 МГц	
24*	CF-LP-N/4 МГц	
31	CF-WL/2 МГц	
401	C-RS/5 МГц	
402	C-RS/1 МГц	
403	C-RS/2 МГц	
407	UTXDR/2 МГц	
408	UTXDR/4 МГц	
505*	C-RR/0,5 МГц	
510*	C-RR/1 МГц	
520*	C-RR/2 МГц	
591*	C-RR/0,5 МГц	
592*	C-RR/1 МГц	
601	С-АТ/0,5 МГц	
602	С-АТ/1 МГц	
603	С-АТ/2 МГц	
*наиболее распространен	ные измерительные преобразователи,	
используемые вместе с РТ900		

4.5.1 Программирование параметров измерительных преобразователей (продолжение)

 Щелкните кнопку TRANSDUCERS (ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ) и выберите модель измерительного преобразователя из выпадающего списка. Выпадающий список будет отличаться в зависимости от выбора Wetted (Смачиваемый) или Clamp-on (С фиксатором) в качестве типа измерительного преобразователя. После того, как вы сделаете свой выбор, откроется экран, похожий на *Puc. 76* ниже.

Рис. 76: Параметры измерительных преобразователей

- 3. На экране выше РТ900 автоматически ввел параметры выбранного вами измерительного преобразователя. Эти данные точны для всех стондартных измерительных преобразователей, но эти данные следует отредактировать вводом нужной информации, если вы выбрали в качестве модели своего измерительного преобразователя Other (Другое).
 - а. Откройте выпадающий список FREQUENCY (ЧАСТОТА) и выберите частоту, при которой ваш измерительный преобразователь должен работать в соответствии с его конструкцией.
 - **b.** Параметр **TW** это время, которое сигнал измерительного преобразователя тратит на прохождение через измерительный преобразователь и его кабель. Введите значение, указанное GE для вашего измерительного преобразователя.

4.5.1 Программирование параметров измерительных преобразователей (продолжение)

- **4.** Только для измерительных преобразователей **с фиксатором** требуются три следующих дополнительных параметра:
 - **а.** WEDGE ANGLE (УГОЛ ПРИЗМЫ): Этот параметр вводится автоматически программой РТ900 для всех стандартных измерительных преобразователей, но должен редактироваться вводом нужного значения, предоставленного компанией GE для других измерительных преобразователей.
 - **b.** WEDGE SOUND SPEED (СКОРОСТЬ РАСПРОСТРАНЕНИЯ ЗВУКА В ПРИЗМЕ): Этот параметр вводится автоматически программой РТ900 для всех стандартных измерительных преобразователей, но должен редактироваться вводом нужного значения, предоставленного компанией GE для других измерительных преобразователей.
 - с. WEDGE TEMPERATURE (ТЕМПЕРАТУРА ПРИЗМЫ): Этот параметр должен вводиться вручную для всех измерительных преобразователей. Это должно быть среднее значение от температуры окружающей среды и температуры технологического процесса.

4.5.2 Установка поправочного коэффициента Рейнольдса

Поправочный коэффициент Рейнольдса - REYNOLDS CORRECTION FACTOR может быть установлен в либо в состояние On (включен), либо в состояние Off (выключен) (см. *Рисунок 75 на странице 66*). Этот коэффициент корректирует скорость текучей среды, измеряемую через диаметральный тракт, так что она более точно представляет среднюю скорость текучей среды через площадь поперечного сечения трубы. **?ПОПРАВОЧНЫЙ КОЭФФИЦИЕНТ** РЕЙНОЛЬДСА должен быть включен для всех измерений с фиксатором.

4.5.3 Программирование коэффициента счетчика

Чтобы запрограммировать **METER FACTOR** (КОЭФФИЦИЕНТ СЧЕТЧИКА), см. *Рисунок 75 на странице 66* и выполните следующие шаги:

1. Щелкните кнопку **METER FACTOR** (КОЭФФИЦИЕНТ СЧЕТЧИКА), чтобы открыть меню, показанное на *Puc.* 77 ниже.

Рис. 77: Меню Calibrate Factor (Коэффициент калибровки)

 КОЭФФИЦИЕНТ КАЛИБРОВКИ используется для калибровки или корректировки показаний расхода системы РТ900 для приведения в соответствие с другим эталоном расхода. Воспользуйтесь ползунковым переключателем, чтобы установить его в состояние On (Вкл) или Off (Выкл) по мере необходимости.

4.5.3 Программирование коэффициента счетчика (продолжение)

- 3. Воспользуйтесь ползунковым переключателем, чтобы установить К-FACTOR (К-ФАКТОР) в состояние либо Single (Одиночный), либо Table (Таблица). Затем перейдите к соответствующему указанному ниже шагу:
 - SINGLE (ОДИНОЧНЫЙ): Одиночный множитель применяется ко всем измерениям РТ900. Как правило, если поправочный коэффициент Рейнольдса включен, К-ФАКТОР должен быть установлен в значение 1.00. В ином случае типовой диапазон составляет от 0,5 до 2,00.
 - ТАВLЕ (ТАБЛИЦА) (КОЭФФИЦИЕНТ КАЛИБРОВКИ = On (Вкл)): Отображается таблица (см. *Рис.* 78 ниже), которая позователю ввести несколько К-ФАКТОРОВ для точек данных от нескольких разных источников или переменных расхода. Эти точки определяют *калибровочную кривую* для РТ900.

Number of rows			
6		~	
	DATA SC	DURCE	K-FACTOR
1	0.0	m/s	1.0
2	0.0	m/s	1.0
3	0.0	m/s	1.0
4	0.0	m/s	1.0
5	0.0	m/s	1.0
6	0.0	m/s	1.0
	ок		CANCEL

Рис. 78: Таблица К-факторов

4.6 Программирование меню PLACEMENT (УСТАНОВКА)

Меню **PLACEMENT** (УСТАНОВКА) позволяет пользователю конфигурировать метод монтажа измерительных преобразователей, исходя из запрограммированной в меню **TRANSDUCERS** (ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ) информации (см. *"Программирование меню TRANSDUCERS (ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ)" на стр. 66*).

4.6.1 Просмотр конфигурации проходов

В случае измерительных преобразователей с фиксатором (CLAMP-ON) отображается одна из шести возможных конфигураций проходов (TRAVERSE), показанных на *Puc. 79* ниже, в зависимости от запрограммированной информации об измерительном преобразователе. В типовом варианте используется двухпроходная установка.

Рис. 79: Конфигурации проходов с фиксатором

В случае смачиваемых (WETTED) измерительных преобразователей указываются значения следующих параметров, рассчитанные исходя из запрограммированной информации об измерительных преобразователях:

- РАТН LENGTH (ДЛИНА ПУТИ)
- AXIAL LENGTH (ОСЕВАЯ ДЛИНА)

4.6.2 Просмотр расстояния между измерительными преобразователями

Экран **TRANSDUCER SPACING** (РАССТОЯНИЕ МЕЖДУ ИЗМЕРИТЕЛЬНЫМИ ПРЕОБРАЗОВАТЕЛЯМИ) (см. *Рис. 80* ниже) показывает значение, рассчитанное РТ900 для точного расстояния между измерительными преобразователями, расположенными выше и ниже по потоку, исходя из запрограммированной вами информации об измерительных преобразователях. Это значение следует использовать при установке крепежного приспособления измерительных преобразователей на трубе.

Рис. 80: Значение расстояния между измерительными преобразователями

4.6.2а Задаваемое пользователем расстояние между измерительными преобразователями

Если ваши измерительные преобразователи были установлены с расстоянием, отличным от значения, рассчитанного приложением, обратитесь к *Puc. 81* ниже и введите фактическое расстояние следующим образом:

Примечание: Убедитесь, что если вводимое вами установленное расстояние больше расчетной величины, оно превышает расчетную величину не более чем на 10%.

- Введите ваше фактическое расстояние между измерительными преобразователями в единицах, указанных системной настройкой UNITS (ЕДИНИЦЫ).
- 2. Щелкните кнопку ОК, чтобы принять новое значение.

Рис. 81: Задаваемое пользователем расстояние между измерительными преобразователями

4.6.2b Валидация нулевого расхода

Важно: Прежде чем начать действовать, вам следует обеспечить, чтобы текучая среда не проходила по трубе.

После того, как будет проверено, что поток в трубе неподвижен, обратитесь к *Puc. 82* ниже и откалибруйте настройку нулевого расхода, выполнив следующие шаги:

- 1. Щелкните элемент управления вводом VELOCITY (СКОРОСТЬ).
- **2.** Щелкните кнопку **ZERO FLOW** (НУЛЕВОЙ РАСХОД), а затем щелкните кнопку **OK**.
- **3.** Если отображаемое на экране значение скорости не нулевое, запишите отображаемую скорость.
- Введите записанное значение скорости из предыдущего шага в окно MINIMUM FLOW CUTOFF (ОТСЕЧКА МИНИМАЛЬНОГО РАСХОДА) и щелкните кнопку ОК.

ZERO FLOW VALIDATION	
Flow must be static before zeroing the flow. ZERO FLOW MINIMUM FLOW CUTOFF	
0.000	m/s
OK CANCEL	

Рис. 82: Валидация нулевого расхода

4.6.2с Валидация скорости распространения звука

Если скорость распространения звука в вашей текучей среде не равна опубликованным значениям, обратитесь к *Рис. 83* ниже и установите **SOUND SPEED LEVEL** (УРОВЕНЬ СКОРОСТИ ЗВУКА), выполнив следующие шаги:

- 1. Щелкните элемент управления вводом SOUND SPEED LEVEL (УРОВЕНЬ СКОРОСТИ ЗВУКА).
- Введите вашу фактическую скорость распространения звука в единицах, указанных вашей системной настройкой UNITS (ЕДИНИЦЫ).
- 3. Щелкните кнопку ОК, чтобы принять новое значение.

SOUND SPEED VALIDATION	IKSES
Enter the exact sound speed if	known precisely.
SOUND SPEED LEVEL	
0.00	m/s
ок	CANCEL

Рис. 83: Валидация скорости распространения звука

Важно: Теперь вы завершили программирование меню PIPE (ТРУБА), FLUID (ТЕКУЧАЯ СРЕДА), TRANSDUCER (ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ) и PLACEMENT (УСТАНОВКА). Щелкните кнопку GO TO MEASURE (ПЕРЕЙТИ К ИЗМЕРЕНИЮ), чтобы перейти к дисплею измерений, или щелкните кнопку LOG DATA (РЕГИСТРАЦИЯ ДАННЫХ), чтобы начать регистрировать данные.

4.7 Конфигурирование опций программирования

Примечание: Инструкции по программированию из данного раздела требуются, только если вы будет использовать какие-либо из указанных ниже опций.

В боковом меню **приложения** щелкните подменю **Program Options** (Опции программирования) в меню **PROGRAM** (ПРОГРАММИРОВАНИЕ), как показано выделением на *Puc. 84* ниже. При этом откроется меню **Program Options** (Опции программирования), показанное на *Pucyнок 85 на странице 78*.

Меню **Program Options** (Опции программирования) содержит следующие закладки:

- **ENERGY** (ЭНЕРГИЯ) (см. *страница* 79)
- INPUTS (ВХОДЫ) (см. *страница* 81)
- **OUTPUTS** (ВЫХОДЫ) (см. *страница* 82)
- USER FUNCTIONS (ПОЛЬЗОВАТЕЛЬСКИЕ ФУНКЦИИ) (см. *страница* 87)

Перейдите к соответствующему разделу для получения инструкций по программированию.

Рис. 84: Меню PROGRAM (ПРОГРАММИРОВАНИЕ)

4.7 Конфигурирование опций программирования (продолжение)

PROGRAM	1 otions		
ENERGY	INPUTS	OUTPUTS	USER FUNCTIONS
ENERGY SWITCH Off	On		
CH1 ENERGY SYSTEM Heating	Cooling		
FLOW LOCATION Supply	Return		
ENTHALPY CALCUL	ATION Custom		
CH1 DENSITY Fixed CH2 DENSITY	~	FIXED CH1 DENSITY	kg/m³
Active	~	VIEW/EDIT TABL	E
SUPPLY TEMPERATI	JRE	TEMPERATURE	
Fixed	~	0.0	۴C
RETURN TEMPERAT	URE	TEMPERATURE	.
Active Input B	~	0.0	

Рис. 85: Меню опций программирования

4.7.1 Программирование закладки ENERGY (ЭНЕРГИЯ)

Первая закладка в меню Program Options (Опции программирования) - это ENERGY (ЭНЕРГИЯ) (см. Рисунок 85 на странице 78). Закладка ЭНЕРГИЯ позволяет пользователю рассчитать энергию системы, исходя из температуры в точке подачи, температуры в точке возврата и потока текучей среды через систему. Для программирования закладки энергии выполните следующие шаги:

- 1. Переведите ENERGY SWITCH (ПЕРЕКЛЮЧАТЕЛЬ ЭНЕРГИИ) в положение либо Off (Выкл), либо On (Вкл). Если вы установите его в Off (Выкл), опция ENERGY (ЭНЕРГИЯ) будет отключена и в данной области не потребуется дополнительного программирования. Если **ПЕРЕКЛЮЧАТЕЛЬ ЭНЕРГИИ** будет установлен в **On** (Вкл), переходите к следующему шагу.
- В области ENERGY CHANNEL (КАНАЛ ЭНЕРГИИ) откройте 2. выпадающий список и выберите либо CH1, CH2, либо Average (Среднее) (среднее от СН1 и СН2).
- 3. В области **ENERGY SYSTEM** (ЭНЕРГЕТИЧЕСКАЯ СИСТЕМА) передвиньте переключатель в положение либо Heating (Harpebanue), либо Cooling (Охлаждение), исходя из типа вашей системы.
- В области FLOW LOCATION (МЕСТО ПОТОКА) передвиньте 4. переключатель в положение либо Supply (Подача), либо Return (Возврат), исходя из нужной точки измерения потока.
- 5. В области ENTHALPY CALCULATION (РАСЧЕТ ЭНТАЛЬПИИ) передвиньте переключатель в положение либо Default (По умолчанию) (Энтальпия = 1,0 кДж/кг/°С при 25°С), либо Custom (Настраиваемая), исходя из предпочтительного метода расчета. Если вы выберите Настраиваемая, вы сможете ввести для своей системы до 10 наборов точек данных температуры/энтальпии в такую таблицу, как Таблица 7 ниже.

	Таблица 7: Таблица расчета энтальпии			
настро	аиваемая энтальния			
Число	строк	10		
	Температура (°C)	Энтальпия (кДж/кг/С)		
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
	OK	Отмена		

4.7.1 Программирование закладки ENERGY (ЭНЕРГИЯ) (продолжение)

6. В областях CH1 DENSITY (ПЛОТНОСТЬ КАН.1) и CH2 DENSITY (ПЛОТНОСТЬ КАН. 2) откройте выпадающий список и выберите либо Fixed (Фиксированная), либо Active (Активная) в качестве источника плотности текучей среды, используемой для выполняемых для канала расчетов. Если вы выберете Fixed (Фиксированная), вам нужно будет ввести необходимое значение. Если вы выберите Active (Активная), вы сможете ввести для своей текучей среды до 10 наборов точек данных *температуры/плотности* в такую таблицу, как *Таблица 8* ниже.

- 7. В области SUPPLY TEMPERATURE (ТЕМПЕРАТУРА ПОДАЧИ) откройте выпадающий список и выберите для своей системы либо Fixed (Фиксированная), либо Active (Активная) в качестве типа подачи. Если вы выберете Fixed (Фиксированная), вам нужно будет ввести необходимое значение. Если вы выберете Active (Активная), вам нужно будет выбрать либо Active Input A (Активный вход А), либо Active Input B (Активный вход В).
- 8. В области RETURN TEMPERATURE (ТЕМПЕРАТУРА ВОЗВРАТА) откройте выпадающий список и выберите для своей системы либо Fixed (Фиксированная), либо Active (Активная) в качестве типа подачи. Если вы выберете Fixed (Фиксированная), вам нужно будет ввести необходимое значение. Если вы выберете Active (Активная), вам нужно будет выбрать либо Active Input A (Активный вход А), либо Active Input B (Активный вход В).
- Важно: ТЕМПЕРАТУРА ПОДАЧИ и ТЕМПЕРАТУРА ВОЗВРАТА не могут использовать один и тот же активный вход.

4.7.2 Программирование закладки INPUTS (ВХОДЫ)

Закладка INPUTS (ВХОДЫ) (см. *Рис. 86* ниже) позволяет пользователю указать параметры для *температуры подачи энергии, температуры возврата* энергии и фиксированной температуры, исходя из ранее запрограммированных вами вариантов выбора в закладке ENERGY (ЭНЕРГИЯ).

≡	PROGR Program	AM Options		
ENE	RGY	INPUTS	OUTPUTS	USER FUNCTIONS
	ANALOG FUNCTION Off	INPUTS A		
	ZERO		SPAN	
	0.0		0.0	
	ANALOG	INPUTS B		
	FUNCTION			
	Return Ter	np 🗸		
	ZERO		SPAN	
	0.0		0.0	

Рис. 86: Меню входов

Чтобы сконфигурировать **ANALOG INPUTS A** (АНАЛОГОВЫЕ ВХОДЫ А), действуйте следующим образом:

- 1. Если либо SUPPLY TEMPERATURE (ТЕМПЕРАТУРА ПОДАЧИ), либо RETURN TEMPERATURE (ТЕМПЕРАТУРА ВОЗВРАТА) была установлена в значение ACTIVE INPUT A (АКТИВНЫЙ ВХОД А) в закладке ENERGY (ЭНЕРГИЯ), это будет значением по умолчанию, демонстриуемым в окне FUNCTION (ФУНКЦИЯ). Введите правильные значения ZERO (НОЛЬ) и SPAN (ИНТЕРВАЛ) в соответствующих окнах.
- 2. Если ни SUPPLY TEMPERATURE (ТЕМПЕРАТУРА ПОДАЧИ), ни RETURN TEMPERATURE (ТЕМПЕРАТУРА ВОЗВРАТА) не будут установлены в значение ACTIVE INPUT A (АКТИВНЫЙ ВХОД А) в закладке ENERGY (ЭНЕРГИЯ), то значением по умолчанию, демонстриуемым в окне FUNCTION (ФУНКЦИЯ), будет Off (Выкл). Никаких дальнейших действий не потребуется, если только пользователь не изменит ввод по умолчанию через выпадающий список. Только тогда потребовались бы значения ZERO (НОЛЬ) и SPAN (ИНТЕРВАЛ).

4.7.2 Программирование закладки INPUTS (ВХОДЫ) (продолжение)

3. Если в окне FUNCTION (ФУНКЦИЯ) выбрано значение General Purpose (Общего назначения), введите правильные значения НУЛЯ и ИНТЕРВАЛА в соответствующих окнах.

Запрограммируйте ANALOG INPUTS В (АНАЛОГОВЫЕ ВХОДЫ В) с помощью тех же шагов, которые описаны для АНАЛОГОВЫХ ВХОДОВ А.

4.7.3 Программирование закладки OUTPUTS (ВЫХОДЫ)

Закладка OUTPUTS (ВЫХОДЫ) (см. *Рис.* 87 ниже) позволяет пользователю определить ANALOG OUTPUTS (АНАЛОГОВЫЕ ВЫХОДЫ), DIGITAL OUTPUTS (ЦИФРОВЫЕ ВЫХОДЫ) и параметры шины MODBUS.

≡	PROGRA Program O	M ptions		
ENI	ERGY	INPUTS	OUTPUTS	USER FUNCTIONS
	ANALOG O MEASUREMENT CH1 ZERO 0.0 ERROR HANDL	UTPUTS r v	DATA SOURCE Amp Disc Up SPAN 0.0	·
	Low DIGITAL OI FUNCTION Pulse	VTPUTS		
	AVE AVE PULSE VALUE 0.0 ERROR HANDL Hold	I NG V	DATA SOURCE Inv Net Tot PULSE WIDTH 0	ms
	MODBUS ADDRESS 0 BITS PARITY 8 None	~ _	BAUD RATE 9600 STOP BITS 1 Bit	×

Рис. 87: Меню выходов

4.7.3а Аналоговые выходы

Для программирования **АНАЛОГОВЫХ ВЫХОДОВ** выполните следующие шаги:

- 1. Откройте выпадающий список в окне MEASUREMENT (ИЗМЕРЕНИЕ) и выберите для выхода либо CH1 (Канал 1), CH2 (Канал 2), Average (Среднее от CH1 и CH2), либо General (Список общих функций).
- 2. Откройте выпадающий список в окне DATA SOURCE (ИСТОЧНИК ДАННЫХ) и выберите одну из имеющихся опций источника данных из *Таблица 9* ниже.

Стандартные переменные					
Канал 1 и Канал 2	AVE (Среднее)	GEN (Общее)			
Velocity (Скорость)	Velocity (Скорость)	AI 1 Current (Ток ан. входа 1)			
Volumetric (Объемн.)	Volumetric (Объемн.)	AI 2 Current (Ток ан. входа 2)			
Standard Volumetric (Стандартн. объемн.)	Standard Volumetric (Стандартн. объемн.)	AI 1 Value (Значение ан. входа 1)			
Mass (Macca)	Mass (Macca)	AI 2 Value (Значение ан. входа 2)			
Batch Forward Totalizer (Прямой сумматор партий)	Batch Forward Totalizer (Прямой сумматор партий)	Power (Мощность)			
Batch Reverse Totalizer (Обратный сумматор партий)	Batch Reverse Totalizer (Обратный сумматор партий)	Forward Energy (Энергия в прямом направлении)			
Batch Net Totalizer (Сумматор нетто партий)	Batch Net Totalizer (Сумматор нетто партий)	Reverse Energy (Энергия в обратном направлении)			
Batch Totalizer Time (Время сумматора партий)	Batch Totalizer Time (Время сумматора партий)	User Func 1 (Польз. функция 1)			
Inventory Forward Totalizer (Инвентарный прямой сумматор)	Inventory Forward Totalizer (Инвентарный прямой сумматор)	User Func 2 (Польз. функция 2)			
Inventory Reverse Totalizer (Инвентарный обратный сумматор)	Inventory Reverse Totalizer (Инвентарный обратный сумматор)	User Func 3 (Польз. функция 3)			
Инвентарный сумматор нетто	Инвентарный сумматор нетто	User Func 4 (Польз. функция 4)			
Inventory Totalizer Time (Время инвентарного сумматора)	Inventory Totalizer Time (Время инвентарного сумматора)	User Func 5 (Польз. функция 5)			
Д	иагностические переменн	ые			
Толь	ко СН1 (Канал 1) и СН2 (Ка	нал 2)			
Sound Speed (Скорость распространения звука)	Angle in Fluid (Угол в текучей среде)	Peak Percent Down (Пиковый процент вниз)			
Reynolds K-Factor (К-фактор Рейнольдса)	Gain Up (Усиление вверх)	Signal Dynamic (Динамика сигнала)			
Multi K-Factor (Множественный К-фактор)	Gain Down (Усиление вниз)	Signal Noise Ratio Up (Соотношение сигнал/шум вверх)			
Delta T (Деьльта Т)	Partial Compression Up (Частичное сжатие вверх)	Signal Noise Ratio Down (Соотношение сигнал/шум вниз)			
Active Time Up (Активное время вверх)	Partial Compression Down (Частичное сжатие вниз)	Signal Quality Up (Качество сигнала вверх)			
Active Time Down (Активное время вниз)	Peak Up (Пик вверх)	Signal Quality Down (Качество сигнала вниз)			
Amplitude Discreet Up (Амплитуда дискретн. вверх)	Peak Down (Пик вниз)	Transit Time Up (Транзитное время вверх)			
Amplitude Discreet Down (Амплитуда дискретн. вверх)	Peak Percent Up (Пиковый процент вверх)	Transit Time Down (Транзитное время вниз)			

Таблица 9: Доступные источники выводимых данных

4.7.3а Аналоговые выходы (продолжение)

- **3.** В окне **ZERO** (НОЛЬ) введите значение, соответствующее **4** м**A** на выходе.
- **4.** В окне **SPAN** (ИНТЕРВАЛ) введите значение, соответствующее **20 мА** на выходе.
- 5. Откройте выпадающий список в окне ERROR HANDLING (ОБРАБОТКА ОШИБОК) и выберите, как РТ900 должен обращаться с состоянием неисправности аналогового выхода. Опции:
 - Low (Низкий уровень) (принудительно задать на выходе 3,6 мА)
 - **High** (Высокий уровень) (принудительно задать на выходе 21 мА)
 - Hold (Удержание) (удерживать текущее значение на выходе)
 - Other (Другое) (принудительно задать на выходе предоставленное пользователем значение)

4.7.3b Цифровые выходы

Для программирования ЦИФРОВЫХ ВЫХОДОВ выполните следующие шаги:

- 1. Откройте выпадающий список в окне FUNCTION (ФУНКЦИЯ) и выберите для нужного типа цифрового выхода одно из следующего: Off (Выкл), Pulse (Импульс), Frequency (Частота), Alarm (Аварийный сигнал) или Gate (Строб).
 - а. Если в окне FUNCTION (ФУНКЦИЯ) было выбрано Off (Выкл), для ЦИФРОВЫХ ВЫХОДОВ никакого дополнительного программирования не требуется.
 - b. Если в окне FUNCTION (ФУНКЦИЯ) было выбрано Pulse (Импульс), счетчик выдает прямоугольный импульс для каждой единицы расхода, проходящей через трубу.
 - Откройте выпадающий список в окне MEASUREMENT (ИЗМЕРЕНИЕ) и выберите для выхода либо CH1 (Канал 1), CH2 (Канал 2), Average (Среднее от CH1 и CH2), либо General (Список общих функций).
 - Откройте выпадающий список в окне DATA SOURCE (ИСТОЧНИК ДАННЫХ) и выберите одну из имеющихся опций источника данных: Batch Forward Totalizer, Batch Reverse Totalizer, Batch Net Totalizer, Inventory Forward Totalizer, Inventory Reverse Totalizer или Inventory Net Totalizer.
 - Введите значения PULSE VALUE (ВЕЛИЧИНА ИМПУЛЬСА) и PULSE WIDTH (ДЛИТЕЛЬНОСТЬ ИМПУЛЬСА) в соответствующих окнах. Эти значения отличаются в зависимости от выбора источника данных (DATA SOURCE).
 - Откройте выпадающий список в окне ERROR HANDLING (ОБРАБОТКА ОШИБОК) и выберите либо Hold (Удержание) (удержание текущего значения), либо Stop (Стоп) (прекратить вывод).

4.7.3b Цифровые выходы (продолжение)

- с. Если в окне FUNCTION (ФУНКЦИЯ) было выбрано Frequency (Частота):
 - Откройте выпадающий список в окне MEASUREMENT (ИЗМЕРЕНИЕ) и выберите для выхода либо CH1 (Канал 1), CH2 (Канал 2), Average (Среднее от CH1 и CH2), либо General (Списое общих функций).
 - Откройте выпадающий список в окне DATA SOURCE (ИСТОЧНИК ДАННЫХ) и выберите нужный источник данных (см. Таблица 9 на странице 83).
 - В окнах **BASE VALUE** (БАЗОВОЕ ЗНАЧЕНИЕ) и **FULL VALUE** (ПОЛНОЕ ЗНАЧЕНИЕ) введите минимальное и максимальное значения для выбранного источника данных.
 - В окне FULL FREQUENCY (ПОЛНАЯ ЧАСТОТА) введите значение данных, соответствующее частоте ПОЛНОГО ЗНАЧЕНИЯ.
 - Откройте выпадающий список в окне ERROR HANDLING (ОБРАБОТКА ОШИБОК) и выберите одно из следующего: Low (принудительная установка на выходе 0 кГц), High (принудительная установка на выходе 10 кГц), Hold (удержание последнего хорошего значения) или Other (Другое) (принудительная установка на выходе заданного пользователем значения).
- d. Если в окне FUNCTION (ФУНКЦИЯ) было выбрано Alarm (Аварийный сигнал):
 - Откройте выпадающий список в окне MEASUREMENT (ИЗМЕРЕНИЕ) и выберите для выхода либо CH1 (Канал 1), CH2 (Канал 2), Average (Среднее от CH1 и CH2), либо General (Список общих функций).
 - Откройте выпадающий список в окне DATA SOURCE (ИСТОЧНИК ДАННЫХ) и выберите нужный источник данных (см. Таблица 9 на странице 83).
 - Откройте выпадающий список в окне ALARM STATE (АВАРИЙНОЕ СОСТОЯНИЕ) и выберите либо Normal (Нормальный режим) (нормально разомкнутые контакты), либо Fail-Safe (Отказобезопасный режим) (нормально замкнутые контакты).
 - Откройте выпадающий список в окне ALARM TYPE (ТИП АВАРИЙНОГО СИГНАЛА) и выберите одно из следующего: Low (Низкий уровень) (аварийный сигнал активируется, если измерение меньше или равно запрограммированному аварийному значению (ALARM VALUE)), High (Высокий уровень) (аварийный сигнал активируется, если измерение больше или равно запрограммированному аварийному значению (ALARM VALUE)) или Foult (Отказ) (аварийный сигнал активируется при условии системного отказа).
 - В окне ALARM VALUE (АВАРИЙНОЕ ЗНАЧЕНИЕ) введите нужную точку срабатывания аварийного сигнала.

4.7.3b Цифровые выходы (продолжение)

е. Если в окне FUNCTION (ФУНКЦИЯ) было выбрано Gate (Строб), никакого дополнительного программирования не требуется.

Примечание: Строб используется для синхронизации сумматора с системой калибровки счетчика. Строб останавливает и запускает сумматор счетчика, так чтобы пользователь мог сравнить значение сумматора с измеренным объемом воды в баке.

4.7.3с Выходы Modbus

Передатчик РТ900 поддерживает обмен цифровыми данными по протоколу Modbus. Чтобы запрограммировать **MODBUS OUTPUT** (BЫХОД MODBUS), введите в соответствующих окнах значения для следующих параметров:

- **ADDRESS** (АДРЕС) (По умолчанию равен 1)
- **BAUD RATE** (СКОРОСТЬ В БОДАХ) (По умолчанию равна 115200)
- **BITS PARITY** (БИТЫ ЧЕТНОСТЬ) (Значение по умолчанию 8 None (Нет))
- **STOP BITS** (СТОП-БИТЫ) (Значение по умолчанию 1 бит)

4.7.4 Программирование закладки USER FUNCTIONS (ПОЛЬЗОВАТЕЛЬСКИЕ ФУНКЦИИ)

Закладка USER FUNCTIONS (ПОЛЬЗОВАТЕЛЬСКИЕ ФУНКЦИИ) (см. *Рис. 88* ниже) позволяет пользователю программировать математические уравнения для выполнения специализированных вычислений с измерениями счетчика. Например, любой стандартный параметр счетчика может использоваться для расчета нового пользовательского параметра.

≡	PROGRAI	M				
ENE	RGY	INPUTS	OUT	IPUTS	USER FUNCTI	ONS
	SET USER F	UNCTION				
	User Func 1	~	label	1		
	UNITS SYMBOL		DECIM	AL		
	sym1		1		~	
		CH1_AMPup+tbl	1(CH1_AM	Pup)		
	OPERATOR					
)				~	
	4 5	6	7	8	9	
	0		1	2	3	
	SELECT	DEL	ete	SA	VE	
	USER TABL	ES				
	TABLE		LABEL			
	Table 1	~	toble	1		
	EDIT TA	BLE		SAVE TAB	LE	
	LOG DATA		GC	TO MEA	SURE	

Рис. 88: Меню пользовательских функций

4.7.4 Программирование закладки USER FUNCTIONS (ПОЛЬЗОВАТЕЛЬСКИЕ ФУНКЦИИ) (продолжение)

Для программирования ПОЛЬЗОВАТЕЛЬСКИХ ФУНКЦИИЙ выполните следующие шаги:

- 1. Откройте выпадающий список в окне FUNCTION (ФУНКЦИЯ) и выберите нужный *номер функции* (с User Func 1 (Пользовательская функц. 1) по User Func 5 (Пользовательская функц. 5).
- **2.** В окне LABEL (ЯРЛЫК) введите имя функции. Хорошим вариантом будет тип измерения (например, скорость, температура и т.д.).
- В окне UNITS SYMBOL (ОБОЗНАЧЕНИЕ ЕДИНИЦЫ) введите единицы измерения для функции (например, feet/sec (фут/сек), degrees F (градусы Фаренгейта) и т.д.).
- Откройте выпадающий список в окне DECIMAL (ДЕСЯТИЧНЫЕ) и выберите нужное число десятичных знаков для значения функции (от 0 до 4).
- 5. Определите пользовательскую функцию, выполнив следующие шаги:
 - **а.** Откройте выпадающий список в окне **OPERATOR** (ОПЕРАТОР) и выберите нужный математический оператор (доступные варианты см. *Таблица 10*). Эти операторы используются в качестве структурных элементов для создания функции.

Таблица 10: Доступные математические операторы

+	-	*	/	^
()	E	MODE	ехр
abs	inv	In	log	sqrt
sin	COS	tan	asin	acos
atan	tbl1	tbl2	tbl3	tbl4

- **b.** Щелкните нужный математический оператор из списка.
- с. Если ваш выбор является *математической функцией*, щелкните в таблице оператор **MODE** и введите нужный вам *источник данных* и *канал*. Затем щелкните кнопку **SELECT** (ВЫБРАТЬ), чтобы *подтвердить* выбранные варианты, или кнопку **DELETE** (УДАЛИТЬ), чтобы *отменить* их.
- **d.** После того, как вы закончите определение своей функции из доступных операторов, щелкните кнопку **SAVE** (СОХРАНИТЬ), чтобы сохранить пользовательскую функцию в памяти РТ900.

4.7.4 Программирование закладки USER FUNCTIONS (ПОЛЬЗОВАТЕЛЬСКИЕ ФУНКЦИИ) (продолжение)

- 6. Определите Пользовательскую таблицу, выполнив следующие шаги:
 - **а.** Откройте выпадающий список в окне **TABLE** (ТАБЛИЦА) и выберите нужный *номер таблицы* (с **Table 1** (Table 1 (Taблица 1)) по **Table 4** (Таблица 4).
 - **b.** В окне LABEL (ЯРЛЫК) введите имя таблицы.
 - с. Щелкните кнопку EDIT TABLE (РЕДАКТИРОВАТЬ ТАБЛИЦУ), чтобы открыть пустую таблицу, как показано в *Таблица 11* ниже. Затем введите свои данные в таблицу.

ТАБЛИЦЫ				
Число	строк		10	
	х	Y		
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
	ОК	Отмена		

Таблица 11: Пользовательская таблица

d. После того, как вы закончите ввод данных в таблицу, щелкните кнопку **SAVE TABLE** (СОХРАНИТЬ ТАБЛИЦУ), чтобы сохранить пользовательскую таблицу в памяти РТ900.

Важно: Теперь вы закончили программирование меню USER FUNCTIONS (ПОЛЬЗОВАТЕЛЬСКИЕ ФУНКЦИИ). Щелкните кнопку GO TO MEASURE (ПЕРЕЙТИ К ИЗМЕРЕНИЮ), чтобы перейти к дисплею измерений, или щелкните кнопку LOG DATA (РЕГИСТРАЦИЯ ДАННЫХ), чтобы начать регистрировать данные. [эта страница намеренно оставлена без содержания]

Глава 5. Измерения

5.1 Введение

РТ900 - это ультразвуковой времяпролетный расходомер. Во время обработки сигналов измеряются или рассчитываются многие системные параметры. Приложение РТ900 предоставляет пользователю мощный инструмент для мониторинга этих параметров в реальном времени.

На начальном экране приложения щелкните значок MEASURE (ИЗМЕРЕНИЕ)

№, чтобы открылся экран, аналогичный *Рис.* 89 ниже. Если система находится в **ОНЛАЙН**-режиме, все отображаемые значения будут значениями в реальном времени, однако если система находится в **АВТОНОМНОМ** режиме, отображаемые значения будут последними значениями, полученными, когда система находилась в **ОНЛАЙН**-режиме.

Рис. 89: Типовой экран измерений

5.2 Настройка измерений для отображения

Приложение РТ900 может одновременно показывать до 10 разных переменных. Чтобы настроить экран дисплея, щелкните кнопку EDIT (РЕДАКТИРОВАТЬ) вверху справа на экране измерений, чтобы открыть меню SET UP MEASUREMENTS (НАСТРОЙКА ИЗМЕРЕНИЙ), как показано на *Puc. 90* выше.

SET U	\times		
CHANNEL GEN	MEASURE	UNITS	ADD
СН1	Volumetric	m³/h	×
СН1	SNR Up		×
СН1	Sound Speed	m/s	×
СН1	Amp Disc Up		×
CH2	Sound Speed	m/s	×
GEN	AI 1	mA	×
6 / 10	Measurements Set		ок

Рис. 90: Меню настройки измерений

Чтобы настроить отображение измерений, выполните следующие шаги:

- 1. Откройте выпадающий список в окне CHANNEL (КАНАЛ) и выберите в качестве отображаемого канала одно из следующего: CH1, CH2, Average (Среднее) или General (Общее).
- 2. Откройте выпадающий список в окне MEASURE (ИЗМЕРЕНИЕ) и выберите из списка нужную переменную измерения (варианты выбора см. в *Таблица 12 на странице 93*).
5.2 Настройка экрана измерений (продолжение) Таблица 12: Доступные переменные измерений

Стандартные переменные					
Канал 1 и Канал 2	AVE (Среднее)	GEN (Общее)			
Velocity (Скорость)	Velocity (Скорость)	AI 1 Current (Ток ан. входа 2)			
Volumetric (Объемн.)	Volumetric (Объемн.)	AI 2 Current (Ток ан. входа 2)			
Standard Volumetric (Стандартн. объемн.)	Standard Volumetric (Стандартн. объемн.)	AI 1 Value (Значение ан. входа 2)			
Mass (Macca)	Mass (Macca)	AI 2 Value (Значение ан. входа 2)			
Batch Forward Totalizer (Прямой сумматор партий)	Batch Forward Totalizer (Прямой сумматор партий)	Power (Мощность)			
Batch Reverse Totalizer (Обратный сумматор партий)	Batch Reverse Totalizer (Обратный сумматор партий)	Forward Energy (Энергия в прямом направлении)			
Batch Net Totalizer (Сумматор нетто партий)	Batch Net Totalizer (Сумматор нетто партий)	Reverse Energy (Энергия в обратном направлении)			
Batch Totalizer Time (Время сумматора партий)	Batch Totalizer Time (Время сумматора партий)	User Func 1 (Польз. функция 5)			
Inventory Forward Totalizer (Инвентарный прямой сумматор)	Inventory Forward Totalizer (Инвентарный прямой сумматор)	User Func 2 (Польз. функция 5)			
Inventory Reverse Totalizer (Инвентарный обратный сумматор)	Inventory Reverse Totalizer (Инвентарный обратный сумматор)	User Func 3 (Польз. функция 5)			
Инвентарный сумматор нетто	Инвентарный сумматор нетто	User Func 4 (Польз. функция 5)			
Inventory Totalizer Time (Время инвентарного сумматора)	Inventory Totalizer Time (Время инвентарного сумматора)	User Func 5 (Польз. функция 5)			
<i>L</i>	циагностические переменн	ые			
Толі	ько СН1 (Канал 1) и СН2 (Ка	нал 2)			
Sound Speed (Скорость распространения звука)	Angle in Fluid (Угол в текучей среде)	Peak Percent Down (Пиковый процент вниз)			
Reynolds K-Factor (К-фактор Рейнольдса)	Gain Up (Усиление вверх)	Signal Dynamic (Динамика сигнала)			
Multi K-Factor (Множественный К-фактор)	Gain Down (Усиление вниз)	Signal Noise Ratio Up (Соотношение сигнал/шум вверх)			
Delta T (Дельта Т)	Partial Compression Up (Частичное сжатие вверх)	Signal Noise Ratio Down (Соотношение сигнал/шум вниз)			
Active Time Up (Активное время вверх)	Partial Compression Down (Частичное сжатие вниз)	Signal Quality Up (Качество сигнала вверх)			
Active Time Down (Активное время вниз)	Peak Up (Пик вверх)	Signal Quality Down (Качество сигнала вниз)			
Amplitude Discreet Up (Амплитуда дискретн. вверх)	Peak Down (Пик вниз)	Transit Time Up (Транзитное время вверх)			
Amplitude Discreet Down (Амплитуда дискретн. вверх)	Peak Percent Up (Пиковый процент вверх)	Transit Time Down (Транзитное время вниз)			

3. Обратите внимание, что окно UNITS (ЕДИНИЦЫ) неактивно, поскольку единицы определяются выбором вариантов в меню Units Options (Опции единиц) (см. *"Конфигурирование единиц измерения" на стр. 57*). Щелкните кнопку ADD, чтобы добавить новое измерение в набор измерений в реальном времени.

4.

5.2 Настройка экрана измерений (продолжение)

- Чтобы удалить измерение из набора измерений, щелкните кнопку справа от нужного измерения.
- 6. Обратите внимание, что отображаются число измерений, в данный момент находящихся в списке, и максимально допустимое число измерений (10). Если у вас в списке уже есть 10 измерений, вам следует удалить какое-нибудь измерение, прежде чем вы сможете добавить новое измерение.
- **7.** Щелкните кнопку **ОК**, чтобы закрыть меню настройки и вернуться на экран отображения измерений.

5.3 Просмотр измерений

Обратите внимание, что на *Puc. 91* ниже CH1 (канал 1) был включен, а CH2 (канал 2) был выключен в меню PROGRAM (ПРОГРАММИРОВАНИЕ). Кроме того, к каналу General (Общее) не подключено никакого источника Al (аналоговый ввод), потому что значение нулевое.

5.3 Просмотр измерений (продолжение)

Если щелкнуть измерение на экране измерений, то откроется всплывающее диалоговое окно для изменения десятичного формата для этого измерения (см. *Рис. 92* ниже).

- 1. Выберите нужный десятичный формат в выпадающем списке.
- 2. Выберите нужное число десятичных знаков в выпадающем списке.
- 3. Щелкните **OK**, чтобы подтвердить выбранные варианты, либо щелкните **CANCEL** (OTMEHA), чтобы отказаться от изменений.

Рис. 92: Настройка десятичного формата

5.3.1 Отображение нескольких измерений

Экран измерений по умолчанию имеет формат *нескольких измерений*, что означает, что все измерения, которые были настроены, отображаются на одной странице с возможностью прокрутки. Указанием этого типа

отображения является подсвеченный значок **разним** в верхней части экрана (см. *Рисунок 91 на странице 94*). Обратите внимание на следующее:

- Вы можете в любой момент щелкнуть кнопку EDIT (ПРАВКА) в верхней правой части экрана, чтобы открыть меню SET UP MEASUREMENTS (НАСТРОЙКА ИЗМЕРЕНИЙ).
- Непосредственно над областью отображения измерений на экране находится окошко *Состояния ошибки*. При отсутствии системных ошибок нет, отображается No Error (Нет ошибок) (см. *Рисунок 91 на странице 94*). Однако, если системная ошибка все же произойдет, информация о ней будет отображаться в этом месте на мигающем красном фоне.

5.3.2 Отображение одного измерения

Чтобы переключить экран на отображение одного измерения (см. Рис. 93

ниже), щелкните значок **В есло**. В этом режиме в каждый момент отображается только одно измерение, и вы можете переключаться между измерениями, проводя пальцем по экрану влево или вправо.

Рис. 93: Экран одного измерения

5.3.2 Отображение одного измерения (продолжение)

Обратите внимание на следующее:

- Отображение одного измерения по умолчанию это числовое значение измерения в реальном времени, как показано на *Рисунок 93* на странице 96.
- Чтобы переключить дисплей в режим GRAPH (ГРАФИК), щелкните значок в верхней правой части экрана. Как показано на *Рис. 94* ниже, значения измерения отображаются на графике как функция от времени.

Рис. 94: Экран графика измерения

 Чтобы переключить дисплей в режим NUMERIC (ЧИСЛОВОЙ), щелкните значок
 в верхней правой части экрана.

5.3.2 Отображение одного измерения (продолжение)

 В режиме GRAPH (ГРАФИК) щелкните кнопку SETTING (НАСТРОЙКА) непосредственно над графиком, чтобы открыть меню SET Y AXIS (УСТАНОВКА ОСИ Y), показанное на *Puc. 95* ниже.

SET			
Auto 🚬	Manual		
MINIMUM Y		MAXIMUM Y	
-0.1		01	
X RANGE			
30s	~		
ox		CANCEL	

Рис. 95: Меню параметров графика

Чтобы отредактировать параметры оси Ү, выполните следующие шаги:

- 1. Передвиньте ползунковый переключатель в положение Manual (Ручной).
- **2.** Теперь активны текстовые окна **Min Y** (Мин. Y) и **Mox Y** (Макс. Y). В эти текстовые окна теперь можно вводить нужные значения.
- **3.** После редактирования значений щелкните кнопку **OK**, и новые значение вступят в силу, или щелкните **CANCEL** (OTMEHA), чтобы сохранить старые значения.

5.3.3 Экран сумматора партии

Сумматор партии используется для измерения общего объема текучей среды, который проходит через точку измерения за период времени. Это может выполняться автоматически путем использования Стоба цифрового вывода (см. "Цифровые выходы" на стр. 84), либо это можно выполнить вручную.

В случае работы в ручном режиме обратитесь к *Рис. 96* ниже и действуйте следующим образом:

- 1. На экране измерений щелкните значок **Пери** в верхней части экрана.
- Чтобы запустить сумматор партии, щелкните кнопку START (ПУСК). Обратите внимание, что во время работы сумматора кнопка START заменяется на кнопку STOP (СТОП).
- **3.** Чтобы остановить сумматор партии, щелкните кнопку **STOP** (СТОП). Обратите внимание, что когда сумматор не работает, кнопка **STOP** заменяется на кнопку **START**.
- 4. В любой момент вы можете обнулить сумматор партии, щелкнув кнопку **RESET** (СБРОС). Имейте в виду, что при этом сбрасывается только сумматор партии.

😑 MEASURE 🔹 🚥 🖃 😽 🕬					
TOTALIZER					
START	RESET				
Channel 1					
Batch Forward Totalizer	0.000	m?			
Botch Reverse Totolizer	0.000	m'			
Batch Net Totalizer	0.000	m³			
Batch Totalizer Time	0.000	\$			
Channel 2					
Average					
Batch Forward Totalizer	0.000	m'			
Botch Reverse Totolizer	0.000	m'			
Batch Net Totalizer	0.000	m³			
Batch Totalizer Time	0.000	\$			

Рис. 96: Экран сумматора

Отображение диагностических параметров 5.3.4

В время работы РТ900 измеряет различные системные параметры с целью анализа рабочих характеристик системы. Эти диагностические параметры указываются на экране измерений DIAGNOSTICS (ДИАГНОСТИКА) (см. Puc. 97 ниже). Чтобы получить доступ к этому экрану, щелкните значок

в верхней части экрана измерений.

После того, как вы закончите просматривать диагностические параметры, щелкните соответствующий значок в верхней части экрана, чтобы вернуться к отображению измерений.

Примечание: На экране ниже Channel 1 (Канал 1) активен, а Channel 2 (Канал 2) неактивен. Кроме того, все диагностические параметры сигналов находятся в пределах нормального диапазона, как показывают галочки на зеленом фоне справа от каждого параметра.

Рис. 97: Экран диагностических измерений

Глава 6. Регистрация данных

6.1 Введение

Передатчик РТ900 поддерживает простую в использовании функцию регистрации данных, которая позволяет записывать данные диагностики и измерений в файле журнала регистрации. Для создания файла журнала регистрации должны быть указаны следующие параметры:

- Для регистрации данных имеются следующие каналы:
 - CHANNEL 1 (КАНАЛ 1) (34 доступных переменных)
 - CHANNEL 2 (КАНАЛ 2) (34 доступных переменных)
 - Average CHANNEL (КАНАЛ среднего) (12 доступных переменных)
 - General CHANNEL (КАНАЛ общего) (10 доступных переменных)
- Полный список переменных измерений, доступных для каждого из указанных выше каналов см. в *Таблица 12 на странице 93*.
- Для журнала регистрации должны быть указаны время и дата начала, время и дата окончания и временной интервал.
- Файл регистрируемых данных записывается в формате .CSV. Доступ к файлам журналов регистрации осуществляется через USB-порт РТ900, и их можно открывать с помощью большинства текстовых редакторов.
- Временной интервал, продолжительность регистрации и число записей в совокупности влияют на общий объем памяти, требуемой для хранения ваших файлов журналов регистрации. Полный объем используемой памяти и оставшуюся неиспользованную память можно увидеть в меню TRANSMITTER STORAGE (ПАМЯТЬ ПЕРЕДАТЧИКА).

6.2 Добавление журнала регистрации

Доступ к функции LOG (ЖУРНАЛ РЕГИСТРАЦИИ) можно получить из меню боковой панели АРР (ПРИЛОЖЕНИЕ) или из меню PROGRAM (ППРОГРАММИРОВАНИЕ). Когда вы в первый раз войдете в функцию LOG,

вы увидите сообщение, показанное на Рис. 98 ниже.

Рис. 98: Начальный экран журнала регистрации

Важно: Прежде чем создавать новый журнал регистрации, обязательно синхронизируйте установки времени передатчика и планшета, щелкнув кнопку DATE & TIME (ДАТА И ВРЕМЯ) в меню TRANSMITTER (ПЕРЕДАТЧИК) (см. Рисунок 103 на странице 110).

Просто щелкните кнопку **OK**, чтобы открыть меню **ADD LOG** (ДОБАВИТЬ ЖУРНАЛ РЕГИСТРАЦИИ), показанное на *Puc. 99* ниже.

Рис. 99: Меню ADD LOG (ДОБАВИТЬ ЖУРНАЛ РЕГИСТРАЦИИ)

6.2 Добавление журнала регистрации (продолжение)

Запрограммируйте параметры нового журнала регистрации, как показано в *Таблица 13* ниже:

Параметр	Тип ввода	Описание
LOG NAME (ИМЯ ЖУРНАЛА РЕГСИТРАЦИИ):	Ввод вручную	Максимум 11 символов
FORMAT (ФОРМАТ):	Ползунковый переключатель	Linear (Линейный): Записывает все значения от времени начала до времени окончания Circular (Циклический): После записи 100 значений самое старое значение удаляется, прежде чем сможет добавиться новое значение.
CHANNEL (КАНАЛ)	Выпадающий список	СН1 (КАН. 1), СН2 (КАН. 2), Average (Среднее), General (Общее) (доступные переменные измерений см. в <i>Таблица 12 на странице 93</i>).
INTERVAL (ИНТЕРВАЛ):	Выпадающий список	1-20 сек (время между двумя последовательными значениями).
START DATE & TIME (ДАТА И ВРЕМЯ НАЧАЛА):	Ввод вручную	Когда начинается ведение журнала регистрации
END DATE & TIME (ДАТА И ВРЕМЯ ОКОНЧАНИЯ):	Ввод вручную	Когда прекращается ведение журнала регистрации

Таблица 13: Программирование параметров журнала регистрации

Обратите внимание на следующее:

- Передатчик РТ900 начнет вести журнал регистрации, только если наступают запрограммированные ДАТА И ВРЕМЯ И НАЧАЛА и передатчик в это время включен.
- Запрограммированные ДАТА И ВРЕМЯ ОКОНЧАНИЯ должны наступать после запрограммированных ДАТЫ И ВРЕМЕНИ НАЧАЛА, иначе отображается сообщение об ошибке.
- Не существует определенного предела ни для числа журналов регистрации, ни для размера отдельного журнала регистрации, хранящихся в передатчике, однако общий доступный объем памяти для хранения журналов ограничивается емкостью запоминающего устройства РТ900.

6.3 Удаление, выключение и редактирование журнала регистрации

В главном меню LOGS)ЖУРНАЛЫ РЕГИСТРАЦИИ) (см. *Рис. 100* ниже) указываются все существующие журналы регистрации и их текущее состояние. Каждый указанный журнал регистрации можно редактировать, выключить или удалить, в зависимости от его текущего состояния.

E LOGS				
To view logged do USB and view on (ata, extract it from the a computer.	transmitter by		
NAME	STATUS	SELECT		
1234Sobcdef	S			
234Sabcdefg	S			
3234Sabcdef	S	\checkmark		
4234Sabcdef	C			
5234Sabcdef		нт		
ADD	STOP	DELETE		

Рис. 100: Главное меню LOGS (ЖУРНАЛЫ РЕГИСТРАЦИИ)

каждый из указанных журналов регистрации имеет одно из трех следующих обозначений состояния:

- Значок означает, что журнал регистрации находится в режиме ожидания, поскольку еще не наступило время начала работы. В этом состоянии вы можете редактировать (EDIT), удалить (DELETE) или выключить (STOP) этот журнал.
- Значок Solavaet, что журнал регистрации выключен, поскольку время окончания работы прошло или пользователь его выключил. В этом состоянии можно только удалить (DELETE) этот журнал.
- Значок означает, что журнал регистрации работает, поскольку еще не наступило время окончания работы. В этом состоянии можно только выключить (STOP) журнал регистрации, прежде чем наступит время окончания его работы.

6.3.1 Удаление журнала регистрации

Чтобы удалить (**DELETE**) **ожидающий** или **выключенный** журнал регистрации, выполните следующие шаги:

- 1. В главном меню LOGS (см. *Рисунок 100 на странице 104*) щелкните столбец SELECT (ВЫБРАТЬ) справа от журнала, который вы хотите удалить.
- 2. Проверьте, что справа от журнала, который вы хотите удалить,

показан значок 🗸.

3. Щелкните кнопку **DELETE** (УДАЛИТЬ), чтобы удалить выбранный журнал.

6.3.1а Выключение журнала

Чтобы выключить (STOP) ожидающий или работающий журнал регистрации, выполните следующие шаги:

- 1. В главном меню LOGS (см. *Рисунок 100 на странице 104*) щелкните столбец SELECT (ВЫБРАТЬ) справа от журнала, который вы хотите выключить.
- **2.** Проверьте, что справа от журнала, который вы хотите выключить, показан значок .
- **3.** Щелкните кнопку **STOP** (ВЫКЛЮЧИТЬ), чтобы выключить выбранный журнал.

6.3.2 Редактирование журнала регистрации

Чтобы отредактировать (EDIT) ожидоющий журнал регистрации, выполните следующие шаги:

- 1. В главном меню LOGS (см. *Рисунок 100 на странице 104*) щелкните столбец SELECT (ВЫБРАТЬ) справа от журнала, который вы хотите редактировать.
- **2.** Проверьте, что справа от журнала, который вы хотите выключить, показан значок .
- **3.** Щелкните кнопку **EDIT** (ПРАВКА), чтобы открыть меню EDIT LOG (ПРАВКА ЖУРНАЛ), показанное на *Puc. 101* ниже.

EDIT LOG	\otimes
LOG NAME 3234Sobcdef	
FORMAT Linear Circular	
channel AVE Y	INTERVAL
START DATE & TIME 06-15-2016 11:18	END DATE & TIME 06-15-2016 11:19
	UPDATE

Рис. 101: Меню EDIT LOG (ПРАВКА ЖУРНАЛА)

- Редактируйте параметры журнала регистрации в показанном выше меню с использованием тех же инструкций, которые приведены в "Добавление журнала регистрации" на стр. 102.
- 5. После выполнения всех правок щелкните кнопку UPDATE (ОБНОВИТЬ), чтобы сохранить свои изменения.

6.3.3 Просмотр журнала регистрации

зарегистрированные в журнале данные хранятся в передатчике РТ900. Доступ к этим данным можно осуществить из ПК по USB-соединению.

Чтобы просмотреть журнал регистрации, выполните следующие шаги:

- Убедитесь в том, что установки времени передатчика и планшета синхронизированы настройкой времени передатчика в меню TRANSMITTER > DATE & TIME (ПЕРЕДАТЧИК > ДАТА И ВРЕМЯ) (см. *Рисунок 103 на странице 110*).
- 2. Отсоедините USB-кабель и снова вставьте его обратно после того, как передатчик РТ900 будет включен.
- **3.** Отсоедините USB-кабель и снова вставьте его обратно по завершении журнала регистрации. Тогда вы сможете получить доступ к законченному журналу регистрации на РТ900.

[эта страница намеренно оставлена без содержания]

Глава 7. Конфигурирование передатчика

7.1 Введение

Чтобы сконфигурировать передатчик РТ900, щелкните значок **TRANSMITTER** (ПЕРЕДАТЧИК) в меню боковой панели, чтобы открыть меню **TRANSMITTER** (см. *Рис. 102* ниже).

Рис. 102: Меню передатчика

7.1 Введение (продолжение)

Если передатчик РТ900 подключен (CONNECTED) к приложению планшета через *Bluetooth*, меню **TRANSMITTER** показывает информацию об устройстве (device information) для передатчика РТ900, батареи и используемой памяти. Однако если соединение находится в состоянии **OFFLINE** (ABTOHOMHO), эта информация недоступна. См. примеры обоих возможных случаев на *Puc. 103* ниже.

TRANSMITTER PT900-M09169A77 CONNECTED	
BATTERY 87% 13 hr 44 min remaining	(OFFLINE MODE) SERVICE CONNECT
STORAGE 7229MB of 7561MB available	BATTERY NA Powered by AC Adapter
LOGS PRESETS AVAILABLE SPACE 333M8 OMB 7228M8	STORAGE OMB of OMB available
DEVICE INFORMATION	сма сма сма
Model No: PT900 Serial No: M09169A77 Hardware: H Software: 0.0.34	DEVICE INFORMATION Serial No: Software: UPDATE
Power Firmware: 1.1 UPDATE	Model No: RESET
Tog: 0x0 RESET	Date: 02-14-2016
Date: 12-12-2016	Time: 12:00:00 DATE & TIME
Time: 17.46.35 DATE & TIME	Language: English
Language: English	

Рис. 103: Меню CONNECTED (ПОДКЛЮЧЕНО) (слева) и OFFLINE (АВТОНОМНО) (справа)

Показанные выше меню содержат следующие элементы:

- Кнопка CONNECT/DISCONNECT (ПОДКЛЮЧИТЬ/ОТКЛЮЧИТЬ) используется для подключения передатчика, который в данный момент находится в режиме OFFLINE (АВТОНОМНО), или для ОТКЛЮЧЕНИЯ передатчика, который в данный момент находится в режиме ONLINE (ОНЛАЙН).
- Кнопка **SERVICE**(СЕРВИС) используется для конфигурирования функций передатчика.

7.1 Введение (продолжение)

- В области ВАТТЕКУ (БАТАРЕЯ) показано оставшееся время работы батареи для передатчика в режиме ONLINE (недоступно для передатчика в автономном режиме (OFFLINE)).
- В области STORAGE (ПАМЯТЬ) показано использование памяти для Logs (Журналы регистрации) и Presets (Предварительные установки) и оставшаяся неиспользуемая память встроенного ЗУ для передатчика в режиме ONLINE (ОНЛАЙН) (недоступно для передатчика в автономном режиме (OFFLINE)).
- В области DEVICE INFORMATION (ИНФОРМАЦИЯ ОБ УСТРОЙСТВЕ) показано следующее: Serial Number (Серийный номер), Software Version (Версия ПО) и Model Number (Номер модели) для передатчика в режиме ONLINE (ОНЛАЙН) (недоступно для передатчика в автономном режиме (OFFLINE)).
- Примечание: Если требуется обновление микропрограммного обеспечения, загрузите файл микропрограммного обеспечения в передатчик через USB-соединение, затем щелкните кнопку UPDATE (ОБНОВИТЬ). Во время обновления передатчик недоступен. По завершении обновления он автоматически перезагрузится. После перезагрузки передатчик будет находиться в автономном (OFFLINE) режиме.
 - Кнопка **RESET** (СБРОС) позволяет пользователю дистанционно переустановить передатчик в исходное состояние (недоступна для передатчика в автономном режиме (**OFFLINE**)).
- Примечание: Сброс передатчика в исходное состояние удаляет все ПРЕДВАРИТЕЛЬНЫЕ НАСТРОЙКИ и ЖУРНАЛЫ РЕГИСТРАЦИИ, но все заводские калибровочные данные остаются. После сброса передатчик будет находиться в автономном режиме (OFFLINE), и в качестве напоминания появится предупреждающее сообщение.
 - Кнопка DATE & TIME (ДАТА И ВРЕМЯ) используется для установки *часов реального времени* (RTC) передатчика. Эти дата и время синхронизируются с установками планшета.
 - Кнопка LANGUAGE (ЯЗЫК) используется для выбора языка, используемого прикладной программой планшета. Поддерживаемые языки перечислены в Таблица 14 ниже:

	настица 2 понедерживаетые прилежениет повил				
•	English	•	Français	•	Castellano
•	中文	•	Nederlands	•	Português
•	Deutsch	•	한국어	•	Español
•	日本語	•	Svenska	•	Türkçe
•	Italiano	•	Русский	•	العربية

Таблица 14: Поддерживаемые приложением языки

7.2 Обновление программного обеспечения (ПО) передатчика РТ900

Чтобы обновить ПО передатчика РТ900, выполните следующие шаги:

- 1. Получите файл образа (ipl-ifs-PT900_vx.x.xx_svnxxx.bin) для новой версии ПО РТ900.
- 2. Переименуйте новый файл образа в image.bin.
- **3.** Скопируйте новый файл image.bin в РТ900 из ПК с помощью USB-кабеля, как показано на *Puc. 104* ниже.

Примечание: *Если старый файл image.bin уже находится в* РТ900, *перезапишите его.*

Рис. 104: USB-кабель подключен к передатчику

Примечание: Файл image.bin должен быть скопирован в корневой каталог РТ900, как показано на Рис. 105 ниже.

Рис. 105: Местонахождение файла image.bin в РТ900

7.2 Обновление ПО РТ900 (продолжение)

4. В меню **TRANSMITTER** (ПЕРЕДАТЧИК) приложения (АРР) щелкните кнопку **UPDATE** (ОБНОВИТЬ) (см. *Рис. 106* ниже), чтобы запустить обновление.

PT900-M0916	60003 CTED	SERVICE	DISCONNECT
BATTERY	92%	18 hr 46 min r	emaining
STORAGE	7375ME	of 7378MB avail	able
LOGS		PRESETS	AVAILABLE SPACE
049		сна	7375M8
DEVICE INFO	RMATIO	N	
Serial No: M	09160003	1	<u> </u>
Software: 00	.00.25		UPDATE
Model No: P1	1900		RESET
Date: 10-01-	2016		
Time: 13:28:	36		DATE & TIME
Language: E	nglish		LANGUAGE

Рис. 106: Кнопка UPDATE (ОБНОВИТЬ) в меню TRANSMITTER (ПЕРЕДАТЧИК)

Система проверит валидацию нового файла образа по контрольной сумме. Если проверка будет успешной (**OK**), *новое* ПО загрузится при следующей начальной перезагрузке. Если проверка не будет успешной (**NO**), при следующей начальной перезагрузке загрузится *исходное* ПО.

5. На экране, показанном на *Рис. 107* ниже, щелкните кнопку **ОК**, чтобы подтвердить обновление и продолжить работу.

UPDATE	
Warning!	
The Transmitter will not be updating. Press OK to confirm.	available while software is
ок	CANCEL

Рис. 107: Экран подтверждения обновления

7.2 Обновление ПО РТ900 (продолжение)

Выполнение обновления займет около 30 секунд, и во время обновления будет отображаться экран, показанный на *Puc. 108* ниже.

Рис. 108: Экран выполнения обновления

6. После перезагрузки передатчика появится сообщение, показанное на *Рис. 109* ниже. Щелкните кнопку **ОК**, чтобы снова подключить передатчик.

NOTE	12M8 available	
Bluetooth is dis the transmitter	connected. Please press OK to retu ist and reconnect.	irn to
	ок	

Рис. 109: Экран восстановления подключения передатчика

7. Перейдите в меню **TRANSMITTER** (ПЕРЕДАТЧИК) (см. *Рисунок 103 на странице 110*) и проверьте, что информация об устройстве правильная.

Если во время обновления возникли какие-либо проблемы, убедитесь, что соблюдаются следующие условия:

- Убедитесь, что во время обновления электропитание все время **ВКЛЮЧЕНО**, и проверьте, что емкость батареи > 20% или адаптер питания переменного тока подключен.
- Убедитесь, что передатчик НЕ находится в режиме конфигурирования. Он должен быть либо в режиме IDLE (нерабочий), либо в нормальном режиме измерений.
- Если вы хотите снова установить старые системные предварительные установки (Presets), не удаляйте каталог предварительных установок из РТ900.
- Если вы хотите иметь исходные заводские установки, щелкните **RESET** (СБРОС).
- Иногда новая версия ПО будет содержать новую версию заводских предварительных установок. В таком случае старые предварительные установки (Presets) будут во время обновления автоматически затерты новыми установками.

7.3 Программирование меню передатчика SERVICE (СЕРВИС)

Меню передатчика SERVICE (СЕРВИС) содержит следующие подменю:

- CALIBRATION (КАЛИБРОВКА) (см. страница 115)
- МЕТЕК SETUP (НАСТРОЙКА СЧЕТЧИКА) (см. страница 118)
- **TESTING** (ТЕСТИРОВАНИЕ) (см. страница 121)
- ERROR LIMITS (ДОПУСКИ) (см. *страница* 124)

7.3.1 Программирование меню CALIBRATION (КАЛИБРОВКА)

Опция CALIBRATION (КАЛИБРОВКА) (см. *Puc. 110* ниже) используется для калибровки аналогового выхода (ANALOG OUTPUT) и аналогового входа (ANALOG INPUT) передатчика.

Важно: Функция CALIBRATION (КАЛИБРОВКА) работает, только если передатчик находится в режиме ONLINE (ОНЛАЙН).

	SMITTER		\otimes
CALIBRATION	METER SETUP	TESTING	ERROR LIMITS
ANALOC CAI ANALOC CAI	S OUTPUT LIBRATE S INPUT LIBRATE		

Рис. 110: Меню калибровки

7.3.1а Опция калибровки АНАЛОГОВОГО ВЫХОДА

Чтобы выполнить калибровку аналогового выхода (ANALOG OUTPUT), обратитесь к *Рис. 111* ниже и выполните следующие операции:

- 1. Щелкните кнопку CALIBRATE (КАЛИБРОВАТЬ), чтобы открыть меню ANALOG OUTPUT CALIBRATION (КАЛИБРОВКА АНАЛОГОВОГО ВЫХОДА).
- 2. Передвиньте ползунковый переключатель в положение 4 мА.
- В текстовом окне Actual 4 mA (Фактич. 4 мА) введите выходной ток, фактически измеренный цифровым амперметром на аналоговом выходе передатчика.
- Щелкните кнопку ADJUST (ОТРЕГУЛИРОВАТЬ), чтобы выполнить калибровку, или кнопку CANCEL (ОТМЕНА), чтобы отказаться от нового значения.
- 5. Передвиньте ползунковый переключатель в положение 20 мА.
- 6. В текстовом окне Actual 20 mA (Фактич. 4 мА) введите выходной ток, фактически измеренный цифровым амперметром на аналоговом выходе передатчика.
- 7. Щелкните кнопку ADJUST (ОТРЕГУЛИРОВАТЬ), чтобы выполнить калибровку, или кнопку CANCEL (ОТМЕНА), чтобы отказаться от нового значения.
- 8. Щелкните кнопку **RESET** (СБРОС), чтобы вернуть в исходное состояние калибровки как 4 мА, так и 20 мА.

ANALOG OUTPUT CALIBRATION	ANALOG OUTPUT CALIBRATION
SET POINT 4 mA 20 mA	SET POINT 4 mA 20 mA
ACTUAL 4 mA	ACTUAL 20 mA
	· · · · · · · · ·
ADJUST	ADJUST CANCEL

Рис. 111: Меню калибровки 4 мА (слева) и 20 мА (справа)

7.3.1 Опция калибровки АНАЛОГОВОГО ВХОДА

Чтобы выполнить калибровку аналогового входа (ANALOG INTPUT), обратитесь к *Рис. 112* ниже и выполните следующие шаги:

- 1. Щелкните кнопку CALIBRATE (КАЛИБРОВАТЬ), чтобы открыть меню ANALOG INTPUT CALIBRATION (КАЛИБРОВКА АНАЛОГОВОГО ВХОДА).
- 2. Передвиньте ползунковый переключатель в положение AI 1.
- **3.** Подключите *источник откалиброванного тока* **4 мА** к аналоговому входу передатчика.
- 4. Передвиньте ползунковый переключатель в положение 4 мА.
- **5.** В текстовом окне **4 мА** отображается входной ток, измеренный передатчиком РТ900 (см. экран "До" ниже).
- 6. Щелкните ADJUST (ОТРЕГУЛИРОВАТЬ), чтобы выполнить калибровку, либо щелкните CANCEL (ОТМЕНА), чтобы отказаться от отображаемого значения. После щелчка по кнопке ADJUST значение тока, отображаемое в текстовом окне 4 мА должно быть значительно ближе к 4 мА (см. экран "После" ниже).
- 7. Повторите шаги 2-6, чтобы откалибровать входы 4 мА и 20 мА для AI 1 и AI 2.
- 8. Щелкните кнопку **RESET** (СБРОС), чтобы вернуть в исходное состояние калибровки аналоговых входов.

ANALOG INPUT CALIBRATION		ANALOG INPUT C	ALIBRATION	
INPUT CHANNEL		INPUT CHANNEL		
A1 🔵 A12		AI 1	AIZ	
4 mA OR 20 mA		4 mA OR 20 mA		
4 mA 🦲 20 mA		4 mA 💽	20 mA	
4 mA		4 mA		
3.919413		3.981130		
ADJUST RESET	CANCEL	ADJUST	RESET	CANCEL

Рис. 112: Значение входов 4 мА до (слева) и после (справа) калибровки

7.3.2 Программирование меню METER SETUP (НАСТРОЙКА СЧЕТЧИКА)

Опция **METER SETUP** (НАСТРОЙКА СЧЕТЧИКА) (см. *Puc. 113* ниже) используется для конфигурирования следующих параметров системы РТ900 (инструкции см. в следующем разделе):

- СУММАТОР
- БЫСТРОТА РЕАГИРОВАНИЯ
- ЭНЕРГОСБЕРЕГАЮЩИЙ РЕЖИМ
- ВРЕМЯ ЭНЕРГОСБЕРЕЖЕНИЯ
- МЕТОД ОБНАРУЖЕНИЯ ПИКОВ
- ПОРОГОВЫЕ ЗНАЧЕНИЯ ПИКОВ

	SMITTER		\otimes
CALIBRATION	METER SETUP	TESTING	ERROR LIMITS
TOTALI	ZER		
RESPONSE		RESPONSE TIME	
Custom	~	5s	~
POWER	SAVING MODE		
Off	 0n		
MEASUREN	MENT TIME	SLEEP TIME	
5	∽ min	30	Ƴ min
PEAK DETE	ст		
Threshol	d V		
THRESHOL	D DETECT		
Auto	~		

Рис. 113: Меню METER SETUP (НАСТРОЙКА СЧЕТЧИКА)

7.3.2а Программирование опции **TOTALIZER** (СУММАТОР)

Опция **TOTALIZER** (СУММАТОР) позволяет пользователю сбросить в ноль значения всех сумматоров партий и инвентарных сумматоров (т.е., Forward Totalizer (Прямой сумматор), Reverse Totalizer (Обратный сумматор), Net Totalizer (Сумматор нетто) и Totalizer Time (Время сумматора)) во всех каналах, щелкнув кнопку **RESET** (СБРОС).

Опция **RESPONSE** (РЕАГИРОВАНИЕ) позволяет пользователю выбрать временной интервал между двумя измерениями:

- Если из выпадающего списка выбран вариант **Custom** (Пользовательское), доступны следующие опции в секундах: 1s, 2s, 5s, 10s, 30s, 60s, 100s, 200s, 300s или 500s.
- Если из выпадающего списка выбран вариант Fast (Быстрое), используется принимаемый по умолчанию временной интервал.

7.3.2b Программирование опции **POWER SAVING MODE** (ЭНЕРГОСБЕРЕГАЮЩИЙ РЕЖИМ)

Ползунковый переключатель **POWER SAVING MODE** (ЭНЕРГОСБЕРЕГАЮЩИЙ РЕЖИМ) переводит передатчик РТ900 в энергосберегающий режим измерений. После включения (**On**) **ЭНЕРГОСБЕРЕГАЮЩЕГО РЕЖИМА** нужно задать следующие параметры:

- В выпадающем списке MEASUREMENT TIME (ВРЕМЯ ИЗМЕРЕНИЙ) выберите одну из следующих опций в минутах: 5min, 10min, 30min или 60min.
- В выпадающем списке SLEEP TIME (ВРЕМЯ БЕЗДЕЙСТВИЯ) выберите одну из следующих опций в минутах: 30min, 60min, 60min, 120min, 150min, 180min, 210min или 240min.

Например, если **MEASUREMENT TIME** (ВРЕМЯ ИЗМЕРЕНИЙ) равно 5 мин, а **SLEEP TIME** (ВРЕМЯ БЕЗДЕЙСТВИЯ) равно 30 мин, передатчик РТ900 будет выполнять измерения в течение 5 минут, а затем 30 минут бездействовать, прежде чем повторить цикл.

7.3.2c Программирование опции **РЕАК DETECT** (ОБНАРУЖЕНИЕ ПИКА)

Из выпадающего списка в опции **РЕАК DETECT** (ОБНАРУЖЕНИЕ ПИКА) выберите нужный метод выявления пика принимаемого сигнала. Имеются следующие варианты:

- ПИКОВЫЙ метод больше не применяется.
- При использовании метода ПОРОГОВЫХ ЗНАЧЕНИЙ пик определяется как точка, в которой сигнал пересекает некое пороговое значение, которое является процентами от максимального детектированного сигнала. Этот метод более надежен в граничных режимах сигнала.

7.3.2d Программирование опции **THRESHOLD** (ПОРОГОВОЕ ЗНАЧЕНИЕ)

Если в опции **РЕАК DETECT** (ОБНАРУЖЕНИЕ ПИКА) выбран **ПОРОГОВЫЙ** метод, следует сконфигурировать параметр **THRESHOLD DETECT** (ОБНАРУЖЕНИЕ ПОРОГА). В выпадающем списке выберите одну из следующих опций:

- При использовании метода Auto (Автоматически) пороговое значение определяется автоматически.
- При использовании метода Manual (Вручную) должны быть введены минимальные и максимальные пороговые проценты (от 0 до 100%). Также требуется Peak Percentage (Пиковые проценты).
- 7.3.2е Сохранение своих настроек
- Важно: Обязательно щелкните кнопку SAVE (СОХРАНИТЬ), прежде чем выйти из меню НАСТРОЙКИ СЧЕТЧИКА, иначе все ваши настройки будут отклонены.

7.3.3 Программирование меню TESTING (ТЕСТИРОВАНИЕ)

Меню **TESTING** (ТЕСТИРОВАНИЕ) (см. *Рис. 114* ниже) используется для того, чтобы обеспечить правильное функционирование РТ900. Меню содержит следующие тесты:

- WATCHDOG METER (СЧЕТЧИК СТОРОЖЕВОЙ СХЕМЫ)
- WAVE SAMPLE CHANNEL (КАНАЛ ОБРАЗЦОВ СИГНАЛОВ)

		\bigotimes
CALIBRATION METER SETUP	TESTING	ERROR LIMITS
WATCHDOG METER RUN TEST WAVE SAMPLE CHANNE CH1 CH2 CAPTURE	L	

Рис. 114: Меню TESTING (ТЕСТИРОВАНИЕ)

7.3.3а Запуск теста сторожевой схемы

Передатчик РТ900 содержит **схему сторожевого таймера**. Эта схема автоматически сбрасывает передатчик. Следует поступить следующим образом:

- 1. Щелкните кнопку **RUN TEST** (ЗАПУСК ТЕСТА) в меню **TESTING** (ТЕСТИРОВАНИЕ) (см. *Рисунок 114 на странице 121*).
- Правильно функционирующий РТ900 перезапускается, если запущен тест сторожевой схемы, и отображается предупреждающее сообщение, подобное *Puc. 115* ниже.

OK	Cancel
Running this test will ca restart. Hit Ok to confirm.	use the transmitter to
Warning:	
WATCHDOG TEST	

Рис. 115: Предупреждение теста сторожевой схемы

- **3.** Щелкните кнопку **ОК**, чтобы продолжить тестирование, или щелкните кнопку **Cancel** (Отмена), чтобы прервать тест.
- Важно: Передатчик РТ900 отключается от планшета после сброса. Вам следует снова соединить их через Bluetooth перед дальнейшим использованием.

7.3.3b Тестирование при помощи канала образцов сигналов

Тест WAVE SAMPLE CHANNEL (КАНАЛ ОБРАЗЦОВ СИГНАЛОВ) захватывает сигналы и отображает их на графике, подобном *Puc. 116* ниже.

WAVE SAMPL	E CHANNE	EL							$\left(\times\right)$	
RAW UP		N DOWN	0 00	ORR UP	🕑 CORF	RDOWN	🕑 CRO	SS COR	RELATED	
40k										
20k -										
10k -		4							- rawUp	
-10k -		T							rawCUp rawCDn rawCC	
-20k -										
-40k -	500	1000	1500	2000	2500	3000	3500	4000		
	500	1000	1500	2000	2500	3000	3500	4000		

Рис. 116: Захват канала образцов сигналов

Важно: Образцы сигналов требуются только для поиска и устранения неисправностей под руководством GE.

7.3.4 Программирование меню ERROR LIMITS (ДОПУСКИ)

Меню ERROR LIMITS (ДОПУСКИ) (см. *Рис. 117* ниже) позволяет пользователю задать пределы для поступающих сигналов. Если сигнал выходит за эти запрограммированные пределы, на экране MEASUREMENT (ИЗМЕРЕНИЕ) отображается индикация ошибки.

Рис. 117: Меню ДОПУСКИ

7.3.4 Программирование меню ERROR LIMITS (ДОПУСКИ) (продолжение)

Для программирования меню ERROR LIMITS (ДОПУСКИ) выполните следующие шаги:

- В области VELOCITY (СКОРОСТЬ) введите в соответствующие текстовые окна нужные значения MIN LIMIT (МИН. ПРЕДЕЛ) и MAX LIMIT (МАКС. ПРЕДЕЛ). Если скорость измерений выходит за эти пределы, на экране измерений отображается сообщение E3: VELOCITY RANGE (Е3: ДИАПАЗОН СКОРОСТИ).
- В области AMPLITUDE (АМПЛИТУДА) введите в соответствующие текстовые окна нужные значения MIN LIMIT (МИН. ПРЕДЕЛ) и MAX LIMIT (МАКС. ПРЕДЕЛ). Если амплитудный дискриминатор измеряет амплитуду сигнала за этими пределами, на экране измерений отображается сообщение E5: VELOCITY RANGE (E5: ОШИБКА АМПЛИТУДЫ).
- 3. В области SOUND SPEED [+]-] (СКОРОСТЬ ЗВУКА [+]-]) введите нужный максимальный допустимый процент отличия от скорости распространения звука, запрограммированной в меню FLUID (ТЕКУЧАЯ СРЕДА) (значение по умолчанию составляет 20%). Если скорость распространения звука в текучей среде превышает запрограммированное номинальное значение больше, чем на этот процент, на экране измерений отображается сообщение E2: VELOCITY RANGE (E2: ОШИБКА СКОРОСТИ ЗВУКА).
- 4. В области ACCELERATION (УСКОРЕНИЕ) введите в текстовое окно нужное значение верхнего предела. Если измеряемая скорость меняется от одного показания к следующему больше, чем на эту предельную величину, на экране измерений отображается сообщение E6: VELOCITY RANGE (Е6: ОШИБКА ПРОПУСКА ЦИКЛА).
- 5. В области COMPRESSION RATIO (КОЭФФИЦИЕНТ СЖАТИЯ) введите в текстовое окно нужное значение верхнего предела. Если отношение значения *корреляции пика* к значению *вторичного пика* превышает этот предел, на экране измерений отображается сообщение E4: SIGNAL QUALITY ERROR (E4: ОШИБКА КАЧЕСТВА СИГНАЛА).
- 6. В области SOUND SPEED VARIATION RATE (СТЕПЕНЬ ОТЛИЧИЯ СКОРОСТИ ЗВУКА) введите в текстовое окно нужное значение верхнего предела. Если скорость звука меняется от одного показания к следующему больше, чем на эту предельную величину, на экране измерений отображается сообщение E2: VELOCITY RANGE (E2: ОШИБКА СКОРОСТИ ЗВУКА).
- 7. В области SIGNAL LOW LIMIT (РИЖНИЙ ПРЕДЕЛ СИГНАЛА) введите в текстовое окно нужное значение нижнего предела. Если SNR (отношение сигнал/помеха) меньше этого предела или сигнал невозможно обнаружить, когда начинается расход, на экране измерений отображается сообщение E1: LOW SIGNAL ERROR (Е4: ОШИБКА СЛАБОГО СИГНАЛА).

7.3.4 Программирование меню ERROR LIMITS (ДОПУСКИ) (продолжение)

8. Для каждого из параметров, вводимых в этом меню, имеется приемлемый диапазон. Если ввести значение, выходящее за эти пределы, появится сообщение, аналогичное *Puc. 118* ниже.

Рис. 118: Сообщение о выходе за пределы

Щелкните кнопку ОК, чтобы закрыть приведенное выше сообщение,

затем щелкните значок 😶 в меню ERROR LIMITS (ДОПУСКИ) для получения справки (см. пример ниже).

SOUND SPEED VARIATION RATE incorrect value [0.0 to 10000.0 range] (Неправильное значение СТЕПЕНИ ОТЛИЧИЯ СКОРОСТИ ЗВУКА [диапазон от 0,0 до 10000,0]

Щелкните кнопку Compab от справочного сообщения. Затем введите новое значение в пределах указанного диапазона.

9. Обязательно щелкните кнопку SAVE (СОХРАНИТЬ), прежде чем выйти из меню ERROR LIMITS (ДОПУСКИ), иначе все ваши настройки будут отклонены.

Глава 8. Коды ошибок и устранение неисправностей

8.1 Коды ошибок

Во время работы в нижней строке *ЖКД планшета* отображается единственное наиболее приоритетное *сообщение об ошибке*. Эта строка называется **строкой ошибки** и содержит следующее:

- Заголовок ошибки: задает образец ошибки и номер ошибки
- Строка ошибки: дает подробную информацию об ошибке

8.1.1 Заголовок ошибки

Возможные заголовки ошибок перечислены в Таблица 15 ниже.

Канал ошибки	Заголовок ошибки
Канал 1	CH1
Канал 2	CH2
Счетчик	Канал не указан

Таблица 15: Заголовки ошибок

8.1.2 Ошибки расхода

Ошибки pacxoda - это ошибки, возникающие во время измерений. Эти ошибки могут быть вызваны возмущениями в текучей среде, такими как чрезмерное количество твердых частиц в потоке или экстремальные температурные градиенты. Эти ошибки также могут быть вызваны пустой трубой или проблемами с текучей средой. Ошибки расхода вызываются не неисправностью в расходомере, а проблемой с самой текучей средой.

8.1.2a E1: Low Signal (Слабый сигнал)

- **Проблема:** Низкий уровень ультразвукового сигнала или сигнал превышает запрограммированный предел.
- Причина: SNR (отношение сигнал/помеха) меньше нижнего предела сигнала или сигнал невозможно обнаружить. Причиной низкого уровня сигнала может быть дефектный кабель, проблема с текучей средой или трубой, дефектный измерительный преобразователь или проблема с передатчиком. Сигнал, превышающий запрограммированные пределы, скорее всего, возникает по причине неправильного значения пользователя.
- **Действие:** Проверьте перечисленные выше компоненты. Также проверьте запрограммированное значение допусков.

8.1.2b E2: Sound Speed Error (Ошибка скорости звука)

- **Проблема:** Скорость распространения звука превышает запрограммированные пределы.
- Причина: Причиной этой ошибки может быть неправильное программирование, плохие условия прохождения потока или плохая ориентация измерительного преобразователя.
- **Действие:** Исправьте ошибки программирования. Обязательно проверьте запрограммированное значение Error Limits (Допуски).
- 8.1.2c E3: Velocity Range (Диапазон скорости)
- Проблема: Скорость превышает запрограммированные пределы.
- **Причина:** Причиной этой ошибки может быть неправильное программирование, плохие условия прохождения потока или чрезмерная турбулентность.
- **Действие:** Убедитесь, что фактический расход находится в запрограммированных пределах. Также проверьте запрограммированное значение допусков (Error Limits). Устраните все проблемы с текучей средой, трубой и измерительными преобразователями.

8.1.2d E4: Signal Quality (Качество сигнала)

Проблемо: Качество сигнала выходит за запрограммированные пределы.

- Причина: Пик сигналов корреляции выше по потоку или ниже по потоку опустился ниже запрограммированного пика корреляции. Причиной этого также может быть проблема, связанная с текучей средой, трубой или электричеством.
- **Действие:** Проверьте наличие источников электрических помех и удостоверьтесь в целостности планшета, временно использовав РТ900 на тестовой жидкости/трубе, о которых известно, что они в порядке. Проверьте измерительные преобразователи и при необходимости переставьте их.
- 8.1.2e E5: Amplitude Error (Ошибка амплитуды)
- Проблема: Амплитуда сигнала превышает запрограммированные пределы.
- **Причина:** В текучей среде или трубе могут присутствовать твердые или жидкие частицы. Плохое связующее вещество, используемое для измерительных преобразователей с фиксатором;

Действие: Устраните все проблемы, связанные с текучей средой и трубой.

- 8.1.2f Е6: Cycle Skip (Пропуск цикла)
- **Проблема:** ACCELERATION (УСКОРЕНИЕ) превышает запрограммированные пределы.
- Причина: Причиной этого состояния обычно бывают условия плохого прохождения потока или неправильное размещение измерительных преобразователей.
- **Действие:** Устраните все проблемы с текучей средой, трубой и измерительными преобразователями.
8.2 Диагностика

8.2.1 Введение

В данном разделе разъясняется, как найти и устранить неисправности в РТ900, если возникнут проблемы с передатчиком, текучей средой, трубой или измерительными преобразователями. Указаниями на возможную проблему, в частности, являются:

- Отображение сообщения об ошибке на экране планшета
- Беспорядочные показания расхода
- Показания сомнительной точности (т.е., показания, которые не соответствуют показаниям другого расходомерного прибора, подключенного к тому же самому технологическому процессу).

Если возникнет одно из вышеперечисленных условий, перейдите к инструкциям в следующих разделах.

8.2.2 Проблемы с текучей средой и трубой

Если предварительный поиск неисправностей при помощи сообщений **с** кодами ошибок указывает на возможную проблему с текучей средой или трубой, воспользуйтесь данным разделом. Внимательно прочитайте следующие разделы, чтобы определить, действительно ли проблема связана с текучей средой или трубой. Если инструкции из этого раздела не разрешат проблему, обратитесь за помощью в компанию GE.

8.2.2а Проблемы с текучей средой

Причиной большей части связанных с текучей средой проблем является несоблюдение инструкций по установке расходомерной системы. Чтобы устранить проблемы с установкой, обратитесь к Главе 2, «*Установка*». Если физическая установка системы отвечает рекомендованным техническим требованиям, то возможно, что сама текучая среда препятствует точным измерениям расхода. Измеряемая текучая среда должна отвечать следующим требованиям:

 Текучая среда должна быть однородной, однофазной, относительно чистой и постоянно протекающей.

Несмотря на то, что низкий уровень захваченных частиц может оказывать мало влияния на работу РТ900, чрезмерные количества твердых и газообразных частиц могут поглощать или рассеивать ультразвуковые сигналы. Эти помехи прохождению ультразвуковых сигналов через текучую среду могут быть причиной неточных измерений расхода. Кроме того, температурные градиенты в потоке текучей среды могут приводить к беспорядочным или неточным показаниям расхода.

• Текучая среда не должна кавитировать около точки измерения.

Текучие среды с высоким давлением паров могут кавитировать около точки измерения. Это порождает проблемы, возникающие из-за газовых пузырей в жидкости. Кавитацию обычно можно контролировать посредством правильной схемы установки.

• Текучая среда не должна слишком ослаблять ультразвуковые сигналы.

Некоторые жидкости, в особенности, очень вязкие, легко поглощают ультразвуковую энергию. В таком случае на экране дисплея появится сообщение **с кодом ошибки**, чтобы указать, что силы звукового сигнала недостаточно для достоверных измерений.

• Скорость распространения звука в текучей среде не должна слишком сильно меняться.

РТ900 будет допускать относительно большие изменения скорости распространения звука в текучей среде, что может быть вызвано колебаниями состава и/или температуры текучей среды. Однако такие изменения должны происходить медленно. Быстрые колебания скорости распространения звука в текучей среде до значений, значительно отличающихся от запрограммированных в РТ900, приведут к беспорядочным или неточным показаниям расхода. Обратитесь к Главе 4 «Программирование» и обеспечьте, чтобы в счетчике было запрограммирована подходящая скорость распространения звука.

8.2.2b Проблемы с трубой

Проблемы, связанные с трубой, могут возникать в результате либо несоблюдения инструкций по установке из Главы 2 *Установка*,"либо в результате неправильного программирования счетчика. Наиболее распространенные проблемы с трубой следующие:

 Скопление материала в местах расположения измерительных преобразователей.

Скопившийся в местах установки измерительных преобразователей мусор будет создавать помехи передаче ультразвуковых сигналов. В результате, точные измерения расхода станут невозможны. Переустановка измерительных преобразователей зачастую решает такие проблемы, а в некоторых случаях следует использовать смачиваемые измерительные преобразователи. Обратитесь к Главе 2 «*Установка*» для получения более подробных сведений о правильных практических методах установки.

• Неточные измерения трубы.

Точность измерений расхода не лучше, чем точность запрограммированных размеров трубы. Измерьте толщину стенки и диаметр трубы с той же точностью, какая требуется для показаний расхода. Кроме того, проверьте трубу на вмятины, эксцентрисисет, дефекты сварного шва, прямизну и другие факторы, которые могут быть причиной неточных показаний. Обратитесь к Главе 4 *«Программирование»* за инструкциями по вводу данных трубы.

• Внутренность трубы или труба недостаточно чистые.

Чрезмерное скопление окалины, ржавчины и мусора внутри трубы будет мешать измерениям расхода. Как правило, тонкое покрытие или твердый хорошо прилипший нарост на стенке трубы не будет вызывать проблем. Рыхлая окалина и толстые покрытия (такие как смола или нефть) будут создавать помехи передаче звуковых сигналов и могут быть причиной неправильных или недостоверных измерений расхода.

8.2.2с Проблемы с приемопередатчиками

Ультразвуковые измерительные преобразователи - это прочные, надежные устройства. Однако они подвержены физическому повреждению в результате неправильного обращения и химического воздействия. Обратитесь за помощью в компанию GE, если вы не можете решить связанную с измерительным преобразователем проблему.

8.3 Диагностические параметры

Если вы предполагаете в вашей системе РТ900 наличие проблем с жидкостью, трубой, измерительными преобразователями или электрических неполадок, для поиска и устранения этих проблем имеются *диагностические параметры*, перечисленные в *Таблица 16* ниже. Для отображения этих параметров см. "Отображение диагностических параметров" на стр. 100.

Параметр	Параметр Описание		Плохой
Transit Time Up (Транзитное время вверх)	Транзитное время восходящего сигнала	H/Π	Н/П
Transit Time Dn (Транзитное время вниз)	Транзитное время нисходящего сигнала	H/Π	Н/П
Delta T (Дельта T)	Разница между значениями транзитного времени выше и ниже по потоку	H/Π	Η/П
Signal Quality Up (Качество сигнала вверх)	Качество сигнала выше по потоку	≥1200	<400
Signal Quality Dn (Качество сигнала вниз)	Качество сигнала ниже по потоку	≥1200	<400
Amplitude Discreet Up (Амплитуда дискретн. вверх)	Значение амплитудного дискриминатора измерительного преобразователя, установленного выше по потоку	19~29	<19 или >29
Amplitude Discrete Dn (Амплитуда дискретн. вниз)	Значение амплитудного дискриминатора измерительного преобразователя, установленного ниже по потоку	19~29	<19 или >29
Signal Noise Ratio Up (Соотношение сигнал/шум вверх)	Соотношение сигнал/шум сигнала выше по потоку	≥4	<4
Signal Noise Ratio Dn (Соотношение сигнал/шум вниз)	Соотношение сигнал/шум сигнала ниже по потоку	≥4	≪4
Gain Up (Усиление вверх)	Upstream gain in db (Усиление выше по потоку в дБ)	9~85	<9 или >85
Gain Dn (Усиление вниз)	Downstream gain in db (Усиление ниже по потоку в дБ)	9~85	<9 или >85
Peak Up (Пик вверх)	Пиковое значение корреляционного сигнала выше по потоку	H/Π	Η/П
Peak Dn (Пик вниз)	Пиковое значение корреляционного сигнала ниже по потоку	H/Π	Η/П
Peak Percent Up (Пиковый процент вверх)	% пика сигнала выше по потоку	H/Π	Н/П
Peak Percent Dn (Пиковый процент вниз)	% пика сигнала ниже по потоку	Н/П	Н/П

Таблица 16: Доступные диагностические параметры

8.4 Получение справки

Меню **HELP** (СПРАВКА) (см. *Рис. 119* ниже), доступное из меню боковой панели APP, дает информацию для решения проблем и получения ответов на вопросы. В нем содержатся следующие подменю:

- About (Сведения о) (см. *страница* 134)
- Diagnostics (Диагностика) (см. *страница* 135)
- Service (Сервис) (см. *страница* 136)
- Spare Parts (Запасные части) (см. *страница* 137)

рт900-м0916ЈОНИ	≡ About
PROGRAM	
MEASURE	Transl
🔁 logs	Portable Ultr App Vi
(•) TRANSMITTER	©2016 G
P HELP	
About	
Diagnostics	
Service	
Spare Parts	

Рис. 119: Меню HELP (СПРАВКА)

Важно: Обращайтесь к своему торговому представителю компании GE в любое время по любым вопросам, на которые нет ответов в данном руководстве.

8.4.1 Экран About (Сведения о)

Щелкните опцию About (Сведения о), чтобы открыть экран, аналогичный *Puc. 120* ниже. На этом экране отображается общая информация о системе PT900. Эта информация содержит: название модели, тип прибора, версию программного обеспечения и год авторского права на приложение (APP).

Рис. 120: Экран About (Сведения о)

8.4.2 Экран Diagnostics (Диагностика)

Щелкните опцию **Diagnostics** (Диагностика), чтобы открыть экран, аналогичный *Puc. 121* ниже. Этот экран отображает возможные ошибки расхода, которые могут порождаться системой РТ900, такие как ошибка *E1:Low Signal* (Слабый сигнал), показанная в примере ниже. Просто щелкните любой из перечисленных кодов ошибок, чтобы вывести на экран описание этой ошибки.

Примечание: Полное описание кодов ошибок РТ900 см. в "Ошибки расхода" на стр. 127.

📃 Dia	Diagnostics					
	Diagnostics					
E1: Low S	ignal					
E1: Low S	ignal					
Problem:	Poor ultrasonic signal strength or the signal exceeds the programmed limit.					
Couse:	When SNR is less that the value of Signal Low Limits or the signal cannot be found when the flow is started, the Low Signal error will occur. Poor signal strength may be caused by a defective cable, a flowcell problem, a defective transducer or a problem in electronic console A signal that exceeds the programmed limits is probably caused by the entry of an improper value in Signal Low limits.					
Solution:	Check the components listed above. Also, check the programmed error limits value.					
E2: Sound	E2: Sound Speed Error					

Рис. 121: Экран диагностики

8.4.3 Экран Service (Сервис)

Щелкните опцию Service (Сервис), чтобы открыть экран, аналогичный *Рис. 122* ниже. Этот экран предоставляет ссылки на многие услуги, предоставляемые компанией GE для PT900.

Рис. 122: Экран Service (Сервис)

8.4.4 Экран Spare Parts (Запасные части)

Щелкните опцию **Spare Parts** (Запасные части), чтобы открыть экран, аналогичный *Puc. 123* ниже. На этом экране указываются запасные части, которые можно получить от компании GE для системы PT900. Просто щелкните любую из перечисленных запасных частей, чтобы вывести на экран описание этой детали.

🗮 Spare Parts
CPL-3
Gel type couplant for use on portable or temporary applications, temperature range of -20 to 60°C (-4 to 140°F).
CPL-2
PT9-Tablet-XX
PT9-CRR-05-NT
PT9-CRR-10-NT
PT9-CRR-10-HT

Рис. 123: Экран Spare Parts (Запасные части)

8.5 Список тем справки

Далее приведен полный список доступных тем справки:

- 1. What type of tablet may I use with the PT900 Applications? (Какой тип планшета можно использовать с приложениями PT900?)
- 2. Where can I get the PT900 application? (Где можно получить приложение PT900?)
- 3. To update to the latest version of the PT900 APP, do I need to update both my APP and PT900 firmware? (Чтобы выполнить обновление до последней версии APP PT900, нужно ли обновлять как приложение PT900, так и микропрограммное обеспечение PT900?)
- 4. I cannot connect to the PT900 transmitter with my tablet. What am I doing wrong? (Не удается подключить передатчик РТ900 к планшету. Что я делаю неправильно?)
- 5. Can someone connect to the PT900 transmitter withPT900 without the PT900 APP and damage my transmitter? (Может ли кто-нибудь подключиться к передатчику PT900 при помощи PT900 без приложения PT900 и повредить мой передатчик?)
- 6. Can I work OFFLINE and save my settings before connecting to a transmitter? (Можно ли работать АВТОНОМНО и сохранить свои настройки до подключения к передатчику?)
- 7. How many **PRESET**s can the meter save? (Сколько ПРЕДВАРИТЕЛЬНЫХ УСТАНОВОК может сохранить счетчик?)
- 8. Can I connect to more than one PT900 transmitter at a time with my APP? (Можно ли подключиться одновременно к нескольким передатчикам РТ900 при помощи своего приложения (APP)?)
- 9. How do I determine the material of my pipe? (Как определить материал своей трубы?)
- **10.** How do I determine the SNSP of my pipe? (Как определить SNSP своей трубы?)
- 11. How do I determine the outer diameter of my pipe? (Как определить наружный диаметр своей трубы?)
- 12. How do I determine the wall thickness of my pipe? (Как определить толщину стенки своей трубы?)
- 13. What is a pipe lining and how do I know if my pipe has a lining? (Что такое футеровка трубы и как узнать, есть ли футеровка у моей трубы?)
- 14. Do I need to turn on tracking windows? If yes, when do I turn on tracking windows? ((Нужно ли мне включать окна отслеживания? Если да, то когда включать окна отслеживания?)
- **15.** If I do not know the fluid, what do I use for a sound speed? (Если протекающая жидкость неизвестна, какую скорость распространения звука использовать?)
- 16. How do I determine the Kinematic Viscosity of my pipe? (Как определить кинематическую вязкость своей трубы?)
- 17. What is the difference between a wetted transducer and a clamp-on transducer? (Какая разница между смачиваемым измерительным преобразователем и измерительным преобразователем с фиксатором?)
- 18. What transducer should I use for my pipe? (Какой измерительный преобразователь следует использовать для моей трубы?)
- **19.** How do I determine the type of transducer that I have? (Как определить, какого типа у меня измерительный преобразователь?)

8.5 Список тем справки (продолжение)

- **20.** What is wedge temperature and what temperature should I use? (4TO такое температура призмы, и какую температуру мне использовать?)
- **21.** What is **Reynolds Correction Factor** and should it be programmed **On** or **Off**? (Что такое поправочный коэффициент Рейнольдса, и следует запрограммировать его Включение или Выключение?)
- **22.** Что такое Calibration Factor and should it be programmedOn or Off? (Что такое поправочный коэффициент калибровки, и следует запрограммировать его Включение или Выключение?)
- **23.** What is traverse? (Что такое проход?)
- 24. How many traverses should I use to install my transducers? (Сколько проходов следует использовать для установки моих измерительных преобразователей?)
- 25. What is Transducer Spacing and how do I measure it? (Что такое расстояние между измерительными преобразователями и как его измерить?)
- **26.** What is signal level? (Что такое уровень сигнала?)
- **27.** What is an acceptable value for signal level? (Каково приемлемое значение уровня сигнала?)
- **28.** The meter is giving me a sound speed level. How do I know if the value is good or not? (Счетчик дает мне уровень скорости распространения звука. Как узнать, хорошее это значение или нет?)
- **29.** What is the difference between a batch total and an inventory total? (Какова разница между суммарной величиной партии и инвентарной суммарной величиной?)
- **30.** What is **Standard Volumetric**? (Что такое "стандартный объемный"?)
- **31.** What are the **Diagnostics** and what do they mean? (Что такое
- Диагностика и что означают ее значения?) 32. Do the diagnostic values update if the meter is showing an error code? (Обновляются ли диагностические значения, если счетчик показывает код ошибки?)
- **33.** What are the **Error Codes**, what is the cause? How do you fix them? (Yro такое Коды ошибок, какова причина? Как их исправить?)
- **34.** Can you adjust the range in the graph? (Можно ли корректировать диапазон на графике?)
- **35.** What is the **Energy Switch** for? (Для чего предназначен переключатель энергии?)
- **36.** What is the energy channel AVG for? (Для чего предназначено AVG энергетического канала?)
- **37.** How do I know if my system is a heating or cooling system? (Κακ узнать, является ли моя система нагревающей или охлаждающей?)
- **38.** Does it make a difference if I put the flow measurement on the supply or return side? (Будет ли разница, если поместить измерение расхода на стороне подачи или возврата?)
- **39.** What is Entholpy? (Что такое Энтальпия?)
- **40.** How do I know if I should be using a default or custom enthalpy value? (Как узнать, следует ли использовать принимаемое по умолчанию или пользовательское значение энтальпии?)
- **41.** What is **General Purpose** for the analog inputs? (Что такое "Общего назначения" для аналоговых входов?)
- **42.** What is a **User Function**? (Что такое Пользовательская функция?)
- **43.** What is a User Table? (Что такое Пользовательская таблица?)

8.6 Руководство по быстрому запуску

Руководство по быстрому запуску, которое находится на вашей SD-карте, дает общие указания по использованию расходомера и приложения (APP). Начните с просмотра видеороликов по установке на веб-сайте GE по адресу <u>www.gemeosurement.com/pt900</u>, а затем выполните следующие шаги:

- 1. Проверьте передатчик РТ900 планшет перед использованием.
- **2.** Загрузите приложение в планшет либо с SD-карты, либо с нашего веб-сайта (см. ссылку выше).
- **3.** Включите *передатчик*, нажав и удерживая *кнопку питания* более двух секунд. Зеленый **светодиод** электропитания указывает, что питание **включено**.
- 4. Откройте АРР РТ900 на планшете.
- 5. Подключите приложение (APP) к передатчику по связи Bluetooth.
- **6.** Выберите опцию **Measurement Units** (Единицы измерения) и запрограммируйте для счетчика правильную информацию о трубе, жидкости, измерительном преобразователе и размещении.
- 7. Установите измерительные преобразователи на трубе, используя информацию о расстоянии, рассчитанную приложением (АРР).
- 8. Настройки дисплей планшета на нужные значения и просмотр расхода.
- 9. Далее выполняйте операции, как они описаны в других местах руководства.

Глава 9. Обмен данными

9.1 Обмен данными по протоколу Modbus

В целом, расходомер РТ900 работает по стандартному протоколу обмена данными Modbus, определенному в документе **MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b**. Эта спецификация имеется на сайте <u>www.modbus.org</u>. Руководствуясь эти документом, пользователь может использовать любое ведущее устройство Modbus для обмена данными с расходомером.

Для этого применения есть два ограничения:

- РТ900 поддерживает только четыре стандартных кода функций. Это *Read Holding Registers (0x03)* (Чтение регистров временного хранения), *Read Input Registers (0x04)*(Чтение регистров ввода), *Write Multiple Registers (0x10)* (Запись в несколько регистров) и *Read File Record (0x14)* (Чтение записи файла).
- Расходомеру нужен интервал 15 мс между запросами Modbus.
 Основным назначением расходомера является измерение расхода и управление выводом, поэтому сервер Modbus имеет низкий приоритет.

9.2 Карта регистров Modbus

В Таблица 17 ниже приведена полная карта регистров Modbus для РТ900.

	Регистр (в шестнадца теричн.)	Регистр (в десятичн.)	Уровень доступа	Описание	RO (только чтение)/RW (чтение/ запись)	Формат
100	100	256	Пользователь	Короткий тег продукта	RW	CHAR * 16
	108	264	Пользователь	Длинный тег продукта	RW	CHAR * 32
	118	280	Пользователь	eAl1Label (электронная этикетка аналог. входа 1)	RW	CHAR * 16
	120	288	Пользователь	eAl2Label (электронная этикетка аналог. входа 2)	RW	CHAR * 16
	128	296	Пользователь	eLogName (электронное имя журнала)	RW	CHAR * 16
	130	304	Пользователь	Электронный серийный номер продукта	RW	CHAR * 16
	138	312	Пользователь	Электронный серийный номер крепления	RW	CHAR * 16
	140	320	Пользователь	Серийный номер измерительного преобразователя 1 продукта	RW	CHAR * 16
	148	328	Пользователь	Серийный номер измерительного преобразователя 2 продукта	RW	CHAR * 16
	150	336	Пользователь	Серийный номер измерительного преобразователя 3 продукта	RW	CHAR * 16
	158	344	Пользователь	Серийный номер измерительного преобразователя 4 продукта	RW	CHAR * 16
300	300	768	RO	Версия главного аппаратного обеспечения	RO	CHAR * 8

Таблица 17: Карта регистров Modbus

Таблица 17: Карта регистров I	Modbus (продолжение)
-------------------------------	----------------------

	Регистр	Регистр	Уровень	Описание	RO (только	Формат
	(в шестнадца	(в десятичн.)	доступа		чтение)/RW	-
	теричн.)				(чтение/	
	704	770	00		запись)	
	304	112	кU	версия дооавочного аппаратного	RU	CHAR " 8
-	308	776	RO	Версия главного программного	RO	CHAR * 8
	500	110	110	обеспечения	110	
500	500	1280	Пользователь	Группа 1 Глобальных единиц для	RW	INT32
				фактических объемных измерений		
	502	1282	Пользователь	Группа 2 Глобальных единиц для Дня	RW	INT32
	504	1284	Пользователь	Группа 3 Глобальных единиц для дБ	RW	INT32
	506	1286	Пользователь	Группа 4 Глобальных единиц для Плотности	RW	INT32
	508	1288	Пользователь	Группа 5 Глобальных единиц для Диаметров	RW	INT32
	50A	1290	Пользователь	Группа 6 Глобальных единиц для Гц	RW	INT32
	50C	1292	Пользователь	Группа 7 Глобальных единиц для Вязкости	RW	INT32
	50E	1294	Пользователь	Группа 8 Глобальных единиц для мА	RW	INT32
	510	1296	Пользователь	Группа 9 Глобальных единиц для Массы	RW	INT32
	512	1298	Пользователь	Группа 9 Глобальных единиц для	RW	INT32
				Миллисекунд		
	514	1300	Пользователь	Группа 11 Глобальных единиц для Наносекунд	RW	INT32
	516	1302	Пользователь	Группа 12 Глобальных единиц для Процентов	RW	INT32
	518	1304	Пользователь	Группа 13 Глобальных единиц для Секунды	RW	INT32
	51A	1306	Пользователь	Группа 14 Глобальных единиц для Стандартных объемных измерений	RW	INT32
	51C	1308	Пользователь	Группа 15 Глобальных единиц для	RW	INT32
	51E	1310	Пользователь	Группа 16 Глобальных единиц для Времени сумматора	RW	INT32
	520	1312	Пользователь	Группа 17 Глобальных единиц для	RW	INT32
	522	131/	Пользователь	Группа 18 Глобальных единиц для	R/W	INIT32
	522	1314	110/18308010/18	Безразмерных измерений		11132
	524	1316	Пользователь	Группа 19 Глобальных единиц для Микросекунд	RW	INT32
	526	1318	Пользователь	Группа 20 Глобальных единиц для Скорости	RW	INT32
	528	1320	Пользователь	Группа 21 Глобальных единиц для Ускорения	RW	INT32
	52A	1322	Пользователь	Группа 22 Глобальных единиц для Энергии	RW	INT32
	52C	1324	Пользователь	Группа 22 Глобальных единиц для Энергии	RW	INT32
	52E	1326	Пользователь	Глобальная единица для резерва 1	RW	INT32
	530	1328	Пользователь	Глобальная единица для резерва 2	RW	INT32
540	540	1344	Средство	Команда запроса партии	RW	INT32
	5.0		просмотра			
	542	1346	Пользователь	команда запроса инвентаризации	RW	INT32
	544	1348	Средство просмотра	пароль системного запроса	RW	IN132
	546	1350	Средство просмотра	команда системного запроса	RW	INT32
	548	1352	Средство просмотра	команда обновления системы	RW	INT32
700	700	1792	RO	Объявленная системой ошибка	RO	INT32
	702	1794	RO	Битовая карта системной ошибки	RO	INT32
	704	1796	RO	Битовая карта ошибки при запуске системы	RO	INT32

	Регистр (в шестнадца теричн.)	Регистр (в десятичн.)	Уровень доступа	Описание	RO (только чтение)/RW (чтение/ запись)	Формат
	706	1798	RO	Битовая карта ошибки расхода в канале 1 системы	RO	INT32
	708	1800	RO	Битовая карта ошибки расхода в канале 2 системы	RO	INT32
	70A	1802	RO	Битовая карта ошибки Устройства системы	RO	INT32
	70C	1804	RO	Битовая карта системного предупреждения	RO	INT32
720	720	1824	RO	Состояние электропитания системы	RO	INT32
	722	1826	RO	состояние батареи: зарядка, разрядка	RO	INT32
	724	1828	RO	оставшаяся емкость батареи (%)	RO	INT32
	726	1830	RO	оставшийся срок действия батареи (минуты).	RO	INT32
	728	1832	RO	время, оставшееся до полного заряда батареи (минуты).	RO	INT32
	72A	1834	RO	внутренняя температура батареи элементов питания (°C)	RO	INT32
	72C	1836	RO	напряжение батареи элементов питания (мВ)	RO	INT32
	72E	1838	RO	подаваемый ток	RO	INT32
	730	1840	RO	eSystemRESV1	RO	INT32
	732	1842	RO	eSystemRESV1	RO	INT32
	734	1844	RO	eSystemRESV1	RO	INT32
C00	C00	3072	Пользователь	Значение для обработки ошибки аналогового выхода	RW	(IEEE 32 бита)
	C02	3074	Пользователь	Тестовое значение аналогового выхода (процент от интервала)	RW	(IEEE 32 бита)
	C04	3076	Пользователь	Нулевое значение аналогового выхода	RW	(IEEE 32 бита)
	C06	3078	Пользователь	Значение интервала аналогового выхода	RW	(IEEE 32 бита)
	C08	3080	Пользователь	Базовое значение аналогового выхода	RW	(IEEE 32 бита)
	COA	3082	Пользователь	Полное значение аналогового выхода	RW	(IEEE 32 бита)
C40	C40	3136	Пользователь	Импульсное значение цифрового выхода 1	RW	(IEEE 32 бита)
	C42	3138	Пользователь	Базовое значение частоты цифрового выхода 1	RW	(IEEE 32 бита)
	C44	3140	Пользователь	Полное значение частоты цифрового выхода 1	RW	(IEEE 32 бита)
	C46	3142	Пользователь	Аварийное значение цифрового выхода 1	RW	(IEEE 32 бита)
D00	D00	3328	Пользователь	Режим аналогового выхода	RW	INT32
	D02	3330	Пользователь	Тип аналогового выхода	RW	INT32
	D04	3332	Пользователь	Режим цифрового выхода 1	RW	INT32
	D06	3334	Пользователь	Тип цифрового выхода 1	RW	INT32
D20	D20	3360	Пользователь	Тип измерения аналогового выхода	RW	INT32
	D22	3362	Пользователь	Обработка ошибки аналогового выхода	RW	INT32
D40	D40	3392	Пользователь	Тип импульсного измерения цифрового выхода 1	RW	INT32
	D42	3394	Пользователь	Импульсное тестовое значение цифрового выхода 1	RW	INT32
	D44	3396	Пользователь	Обработка ошибки импульса цифрового выхода 1	RW	INT32
	D46	3398	Пользователь	Время импульса цифрового выхода 1	RW	INT32
D60	D60	3424	Пользователь	Тип частотного измерения цифрового выхода 1	RW	INT32
	D62	3426	Пользователь	Тестовое значение частоты цифрового выхода 1	RW	INT32
	D64	3428	Пользователь	Обработка ошибки частоты цифрового выхода 1	RW	INT32

Таблица 17: Карта регистров Modbus (продолжение)

Таблица 17: Карта регистров	Modbus (продолжение)
-----------------------------	----------------------

	Регистр (в шестнадца теричн.)	Регистр (в десятичн.)	Уровень доступа	Описание	RO (только чтение)/RW (чтение/ запись)	Формат
	D66	3430	Пользователь	Значение обработки ошибки частоты цифрового выхода 1	RW	INT32
	D68	3432	Пользователь	Полная частота частоты цифрового выхода 1	RW	INT32
D80	D80	3456	Пользователь	Тип аварийного измерения цифрового выхода 1	RW	INT32
	D82	3458	Пользователь	Аварийное тестовое значение цифрового выхода 1	RW	INT32
	D84	3460	Пользователь	Аварийное состояние цифрового выхода 1	RW	INT32
	D86	3462	Пользователь	Тип аварийного сигнала цифрового выхода 1	RW	INT32
E00	E00	3584	RO	Значение измерения аналогового выхода	RO	(IEEE 32 бита)
	E02	3586	RO	Значение импульсного измерения цифрового выхода 1	RO	(IEEE 32 бита)
	E04	3588	RO	Значение частотного измерения цифрового выхода 1	RO	(IEEE 32 бита)
	E06	3590	RO	Значение аварийного измерения цифрового выхода 1	RO	(IEEE 32 бита)
1500	1500	5376	Пользователь	Скорость в бодах MODBUS ПК	RW	INT32
	1502	5378	Пользователь	Четность MODBUS ПК	RW	INT32
	1504	5380	Пользователь	Стоп-биты MODBUS ПК	RW	INT32
	1506	5382	Пользователь	Адрес счетчика MODBUS ПК	RW	INT32
1540	1540	5440	Средство просмотра	Контроль / состояние журнала регистрации	RW	INT32
	1542	5442	Средство просмотра	Интервал журнала регистрации	RW	INT32
	1544	5444	Средство просмотра	Время регистрации	RW	INT32
	1546	5446	Средство просмотра	Число переменных, подлежащих регистрации	RW	INT32
	1548	5448	Средство просмотра	eLogChannel (Канал электронного журнала)	RW	INT32
	154A	5450	Средство просмотра	eLogFormat (Формат электронного журнала)	RW	INT32
	154C	5452	Средство просмотра	eLogStartDate (Дата начала электронного журнала)	RW	INT32
	154E	5454	Средство просмотра	eLogEndtDate (Дата окончания электронного журнала)	RW	INT32
	1550	5456	Средство просмотра	eLogStartTime (Время начала электронного журнала)	RW	INT32
	1552	5458	Средство просмотра	eLogEndtTime (Время окончания электронного журнала)	RW	INT32
1580	1580	5504	Средство просмотра	поле переменных адресов	RW	INT32
15C0	15C0	5568	Средство просмотра	Поле переменных кодов блоков	RW	INT32
1740	1740	5952	RO	Число записей	RO	INT32
2000	2000	8192	Пользователь	составной коэффициент канала 1	RW	(IEEE 32 бита)
	2002	8194	Пользователь	составной коэффициент канала 2	RW	(IEEE 32 бита)
20C0	20C0	8384	Пользователь	Нижний предел пика корреляции	RW	(IEEE 32 бита)
	20C2	8386	Пользователь	Предел ускорения	RW	(IEEE 32 бита)
	20C4	8388	Пользователь	Нижний предел скорости - используется для расчета нижнего объемного предела	RW	(IEEE 32 бита)
	20C6		Пользователь	Верхний предел скорости - используется для расчета верхнего объемного предела	RW	(IEEE 32 бита)
	20C8	8392	Пользователь	Мин. предел дискриминатора амплитуды	RW	(IEEE 32 бита)

	Регистр (в шестнадца теричн.)	Регистр (в десятичн.)	Уровень доступа	Описание	RO (только чтение)/RW (чтение/	Формат
	20CA	8394	Пользователь	Макс. предел дискриминатора амплитуды	RW	(IEEE 32 бита)
	20CC	8396	Пользователь	Плюсовой-минусовой предел скорости звука	RW	(IEEE 32 бита)
	20CE	8398	Пользователь	нижний предел сигнала	RW	(IEEE 32 бита)
	20D0	8400	Пользователь	ePcr	RW	(IEEE 32 бита)
	20D2	8402	Пользователь	eSOSVariationRate (Степень изменения eSOS)	RW	(IEEE 32 бита)
	20D4	8404	Средство просмотра	ePercentGain (Процентное усиление)	RW	(IEEE 32 бита)
	20D6	8406	Пользователь	максимальное пороговое значение	RW	(IEEE 32 бита)
	20D8	8408	Пользователь	минимальное пороговое значение	RW	(IEEE 32 бита)
20E0	20E0	8416	Пользователь	Отсечка нуля	RW	(IEEE 32 бита)
	20E2	8418	Пользователь	DeltaT Offset (Смещение дельта T)	RW	(IEEE 32 бита)
	20E4	8420	Пользователь	вводимое в ручном режиме пороговое значение	RW	(IEEE 32 бита)
2100	2100	8448	Пользователь	Включение канала 1 (Ch1)	RW	INT32
	2102	8450	Пользователь	Включение канала 2 (Ch2)	RW	INT32
	2104	8452	Средство просмотра	elmpulseResponse (Импульсная характеристика)	RW	INT32
	2106	8454	Средство просмотра	elmpulseRespCmd (Команда импульсной характеристики)	RW	INT32
	2108	8456	Пользователь	определяет способ обнаружения пика корреляционного сигнала	RW	INT32
	210A	8458	Пользователь	определяет способ поиска порогового значения	RW	INT32
21C0	21C0	8640	Пользователь	Время отклика	RW	INT32
	21C2	8642	Пользователь	Отклик	RW	INT32
	21C4	8644	Пользователь	Размер выборки	RW	INT32
2200	2200	8704	RO	Средняя скорость	RO	(IEEE 32 бита)
	2202	8706	RO	Средний объемный показатель	RO	(IEEE 32 бита)
	2204	8708	RO	Среднии стандартныи объемныи показатель	RO	(IEEE 32 бита)
	2206	8710	RO	Средний массовый расход	RO	(IEEE 32 бита)
	2208	8712	RO	Среднее пролетное время (TransitTime)	RO	(IEEE 32 бита)
2240	2240	8768	RO	Средние прямые итоговые данные партии	RO	(IEEE 32 бита)
	2242	8770	RO	Средние обратные итоговые данные партии	RO	(IEEE 32 бита)
	2244	8772	RO	Средние итоговые данные нетто партии	RO	(IEEE 32 бита)
	2246	8774	RO	Время средних итоговых данных партии	RO	(IEEE 32 бита)
	2248	8776	RO	Средние прямые итоговые данные инвентаризации	RO	(IEEE 32 бита)
	224A	8778	RO	Средние обратные итоговые данные инвентаризации	RO	(IEEE 32 бита)
	224C	8780	RO	Средние итоговые данные нетто инвентаризации	RO	(IEEE 32 бита)
	224E	8782	RO	Время средних итоговых данных инвентаризации	RO	(IEEE 32 бита)
2400	2400	9216	Пользователь	Внутренний диаметр трубы канала 1 (Ch1)	RW	(IEEE 32 бита)
	2402	9218	Пользователь	Наружный диаметр трубы канала 1 (Ch1)	RW	(IEEE 32 бита)
	2404	9220	Пользователь	Толщина стенки трубы канала 1 (Ch1)	RW	(IEEE 32 бита)
	2406	9222	Пользователь	Скорость распространения звука в трубе канала 1 (Ch1)	RW	(IEEE 32 бита)
	2408	9224	Пользователь	Толщина футеровки канала 1 (Ch1)	RW	(IEEE 32 бита)

Таблица 17: Карта регистров Modbus (продолжение)

Таблица 17: Карта регистров I	Modbus (продолжение)
-------------------------------	----------------------

	Регистр (в шестнадца теричн.)	Регистр (в десятичн.)	Уровень доступа	Описание	RO (только чтение)/RW (чтение/ запись)	Формат
	240A	9226	Пользователь	Скорость распространения звука в футеровке канала 1 (Ch1)	RW	(IEEE 32 бита)
	240C	9228	Пользователь	Угол призмы XDR канала 1 (Ch1)	RW	(IEEE 32 бита)
	240E	9230	Пользователь	Время призмы XDR канала 1 (Ch1)	RW	(IEEE 32 бита)
	2410	9232	Пользователь	Скорость распространения звука в призме канала 1 (Ch1)	RW	(IEEE 32 бита)
	2412	9234	Пользователь	Скорость распространения звука в жидкости канала 1 (Ch1)	RW	(IEEE 32 бита)
	2414	9236	Пользователь	Мин. скорость распространения звука в жидкости канала 1 (Ch1)	RW	(IEEE 32 бита)
	2416	9238	Пользователь	Макс. скорость распространения звука в жидкости канала 1 (Ch1)	RW	(IEEE 32 бита)
	2418	9240	Пользователь	Статическая плотность жидкости канала 1 (Ch1)	RW	(IEEE 32 бита)
	241A	9242	Пользователь	Эталонная плотность жидкости канала 1 (Ch1)	RW	(IEEE 32 бита)
	241C	9244	Пользователь	Температура жидкости	RW	(IEEE 32 бита)
	241E	9246	Пользователь	Пространство XDR канала 1 (Ch1)	RW	(IEEE 32 бита)
	2420	9248	Пользователь	Калибровочный коэффициент канала 1 (Ch1)	RW	(IEEE 32 бита)
	2422	9250	Пользователь	Кинематическая вязкость канала 1 (Ch1)	RW	(IEEE 32 бита)
	2424	9252	Пользователь	Температура XDR канала 1 (Ch1)	RW	(IEEE 32 бита)
	2426	9254	Пользователь	eCh1 Goycol (Гликоль)	RW	(IEEE 32 бита)
2500	2500	9472	Пользователь	Материал трубы канала 1 (Ch1)	RW	INT32
	2502	9474	Пользователь	Материал футеровки канала 1 (Ch1)	RW	INT32
	2504	9476	Пользователь	Тип XDR канала 1 (Ch1)	RW	INT32
	2506	9478	Пользователь	Частота XDR канала 1 (Ch1)	RW	INT32
	2508	9480	Пользователь	Тип призмы XDR канала 1 (Ch1)	RW	INT32
	250A	9482	Пользователь	Тип жидкости канала 1 (Ch1)	RW	INT32
	250C	9484	Пользователь	Наличие футеровки канала 1 (Ch1)	RW	INT32
	250E	9486	Пользователь	Число проходов канала 1 (Ch1)	RW	INT32
- = / 0	2510	9488	Пользователь	Тип связующего вещества канала 1 (Ch1)	RW	INT32
2540	2540	9536	Пользователь	Включение поправки Рейнольдса в канале 1 (Ch1)	RW	INT32
	2542	9538	Пользователь	Включение активного множественного К-фактора (MultiK) в канале 1 (Ch1)	RW	INT32
	2544	9540	Пользователь	Тип множественного К-фактора (MultiK) в канале 1 (Ch1)	RW	INT32
	2546	9542	Пользователь	Пары MultiK в канале 1 (Ch1)	RW	INT32
	2548	9544	Пользователь	eCh1 Density (Плотность в канале 1)	RW	INT32
	254A	9546	Пользователь	eCh1 DensityPairs (Пары плотности в канале 1)	RW	INT32
2580	2580	9600	Пользователь	Ch1 Peak% (% пик. знач. канала 1)	RW	INT32
	2582	9602	I Іользователь	Ch1 Min Peak% (Мин. % пик. знач. канала 1)	RW	IN132
	2584	9604	Пользователь	Ch1 Max Peak% (Макс. % пик. знач. канала 1) -	RW	INT32
	2586	9606	Пользователь	Включение окон отслеживания в канале 1 (Ch1)	RW	INT32
2600	2600	9728	RO	Скорость канала 1 (Ch1)	RO	(IEEE 32 бита)
	2602	9730	RO	Объемный показатель канала 1 (Ch1)	RO	(IEEE 32 бита)
	2604	9732	RO	Стандартный объемный показатель канала 1 (Ch1)	RO	(IEEE 32 бита)
	2606	9734	RO	Массовый расход канала 1 (Ch1)	RO	(IEEE 32 бита)
2640	2640	9792	RO	Прямые итоговые данные партии канала 1 (Ch1)	RO	(IEEE 32 бита)
	2642	9794	RO	Обратные итоговые данные партии канала 1 (Ch1)	RÖ	(IEEE 32 бита)

	Регистр (в шестнадца теричн.)	Регистр (в десятичн.)	Уровень доступа	Описание	RO (только чтение)/RW (чтение/	Формат
	2644	9796	RO	Итоговые данные нетто партии канала 1 (Ch1)	RO	(IEEE 32 бита)
	2646	9798	RO	Время итоговых данных партии канала 1 (Ch1)	RO	(IEEE 32 бита)
	2648	9800	RO	Итоговые данные инвентаризации канала 1 (Ch1)	RO	(IEEE 32 бита)
	264A	9802	RO	Обратные итоговые данные инвентаризации канала 1 (Ch1)	RO	(IEEE 32 бита)
	264C	9804	RO	Итоговые данные нетто инвентаризации канала 1 (Ch1)	RO	(IEEE 32 бита)
	264E	9806	RO	Время средних итоговых данных инвентаризации канала 1 (Ch1)	RO	(IEEE 32 бита)
2680	2680	9856	RO	Транзитное время вверх канала 1 (Ch1)	RO	(IEEE 32 бита)
	2682	9858	RO	Транзитное время вниз канала 1 (Ch1)	RO	(IEEE 32 бита)
	2684	9860	RO	Ch1 DeltaT (Дельта Т канала 1)	RO	(IEEE 32 бита)
	2686	9862	RO	Ch1 Up Signal Quality (Качество верхнего сигнала канала 1)	RO	(IEEE 32 бита)
	2688	9864	RO	Ch1 Dn Signal Quality (Качество нижнего сигнала канала 1)	RO	(IEEE 32 бита)
	268A	9866	RO	Ch1 Up Amp Disc (Дискриминатор верхней амплитуды канала 1)	RO	(IEEE 32 бита)
	268C	9868	RO	Ch1 Dn Amp Disc (Дискриминатор нижней амплитуды канала 1)	RO	(IEEE 32 бита)
	268E	9870	RO	Соотношение сигнал/шум (SNR) в верхнем канале канала 1 (Ch1)	RO	(IEEE 32 бита)
	2690	9872	RO	Соотношение сигнал/шум (SNR) в нижнем канале канала 1 (Ch1)	RO	(IEEE 32 бита)
	2692	9874	RO	Время в буфере в верхнем канале канала 1 (Ch1)	RO	(IEEE 32 бита)
	2694	9876	RO	Время в буфере в нижнем канале канала 1 (Ch1)	RO	(IEEE 32 бита)
	2696	9878	RO	Усиление сигнала вверх канала 1 (Ch1)	RO	(IEEE 32 бита)
	2698	9880	RO	Усиление сигнала вниз канала 1 (Ch1)	RO	(IEEE 32 бита)
	269A	9882	RO	Коэффициент частичной корреляции вверх канала 1 (Ch1)	RO	(IEEE 32 бита)
	269C	9884	RO	Коэффициент частичной корреляции вниз канала 1 (Ch1)	RO	(IEEE 32 бита)
26C0	26C0	9920	RO	Скорость распространения звука канала 1 (Ch1)	RO	(IEEE 32 бита)
	26C2	9922	RO	Текущее число Рейнольдса канала 1 (Ch1)	RO	(IEEE 32 бита)
	26C4	9924	RO	Текущий поправочный коэффициент кнала 1 (Ch1)	RO	(IEEE 32 бита)
	26C6	9926	RO	Длина пути P канала 1 (Ch1)	RO	(IEEE 32 бита)
	26C8	9928	RO	Осевая длина L канала 1 (Ch1)	RO	(IEEE 32 бита)
2700	2700	9984	RO	Ch1 Up +- Peak (+- пик. знач. вверх канала 1)	RO	INT32
	2702	9986	RO	Ch1 Dn +- Peak (+- пик. знач. вниз канала 1)	RO	INT32
	2704	9988	RO	Динамическое пороговое значение в верхнем (UP) канале канала 1 (Ch1)	RO	INT32
	2706	9990	RO	Динамическое пороговое значение в нижнем (DOWN) канале канала 1 (Ch1)	RO	INT32
2800	2800	10240	Пользователь	Внутренний диаметр трубы канала 2 (Ch2)	RW	(IEEE 32 бита)
	2802	10242	Пользователь	Наружный диаметр трубы канала 2 (Ch2)	RW	(IEEE 32 бита)
	2804	10244	Пользователь	Толщина стенки трубы канала 2 (Ch2)	RW	(IEEE 32 бита)
	2806	10246	Пользователь	Скорость распространения звука в трубе канала 2 (Ch2)	RW	(IEEE 32 бита)
	2808	10248	Пользователь	Толщина футеровки канала 2 (Ch2)	RW	(IEEE 32 бита)

	Регистр (в шестнадца теричн.)	Регистр (в десятичн.)	Уровень доступа	Описание	RO (только чтение)/RW (чтение/ запись)	Формат
	280A	10250	Пользователь	Скорость распространения звука в фитеровке канала 2 (Ch2)	RW	(IEEE 32 бита)
	2800.	10252	Пользователь	Vгол призмы XDR канала 2 (Ch2)	RW	(IFEE 32 бита)
	280E	10254	Пользователь	Время призмы XDR канала 2 (Ch2)	RW	(IFEE 32 бита)
	2810	10256	Пользователь	Скорость распространения звука в призме канала 2 (Ch2)	RW	(IEEE 32 бита)
	2812	10258	Пользователь	Скорость распространения звука в жидкости канала 2 (Ch2)	RW	(IEEE 32 бита)
	2814	10260	Пользователь	Скорость распространения звука в жидкости минимальная канала 2 (Ch2)	RW	(IEEE 32 бита)
	2816	10262	Пользователь	Скорость распространения звука в жидкости максимальная канала 2 (Ch2)	RW	(IEEE 32 бита)
	2818	10264	Пользователь	Статическая плотность жидкости канала 2 (Ch2)	RW	(IEEE 32 бита)
	281A	10266	Пользователь	Эталонная плотность жидкости канала 2 (Ch2)	RW	(IEEE 32 бита)
	281C	10268	Пользователь	Температура жидкости канала 2 (Ch2)	RW	(IEEE 32 бита)
	281E	10270	Пользователь	Пространство XDR канала 2 (Ch2)	RW	(IEEE 32 бита)
	2820	10272	Пользователь	Калибровочный коэффициент канала 2 (Ch2)	RW	(IEEE 32 бита)
	2822	10274	Пользователь	Кинематическая вязкость канала 2 (Ch2)	RW	(IEEE 32 бита)
	2824	10276	Пользователь	Температура XDR канала 2 (Ch2)	RW	(IEEE 32 бита)
	2826	10278	Пользователь	eCh1 Goycol (Гликоль)	RW	(IEEE 32 бита)
2900	2900	10496	Пользователь	Материал трубы канала 2 (Ch2)	RW	INT32
	2902	10498	Пользователь	Материал футеровки канала 2 (Ch2)	RW	INT32
	2904	10500	Пользователь	Тип XDR канала 2 (Ch2)	RW	INT32
	2906	10502	Пользователь	Частота XDR канала 2 (Ch2)	RW	INT32
	2908	10504	Пользователь	Тип призмы XDR канала 2 (Ch2)	RW	INT32
	290A	10506	Пользователь	Тип жидкости канала 2 (Ch2)	RW	INT32
	290C	10508	Пользователь	Наличие футеровки канала 2 (Ch2)	RW	INT32
	290E	10510	Пользователь	Число проходов канала 2 (Ch2)	RW	INT32
	2910	10512	Пользователь	Тип связующего вещества канала 2 (Ch2)	RW	INT32
2940	2940	10560	Пользователь	Включение поправки Рейнольдса в канале 2 (Ch2)	RW	INT32
	2942	10562	Пользователь	Включение активного множественного К-фактора (MultiK) в канале 2 (Ch2)	RW	INT32
	2944	10564	Пользователь	Тип множественного К-фактора (MultiK) в канале 2 (Ch2)	RW	INT32
	2946	10566	Пользователь	Пары множественных К-факторов (MultiK) в канале 2 (Ch2)	RW	INT32
	2948	10568	Пользователь	eCh2 Density (Плотность в канале 2)	RW	INT32
	294A	10570	Пользователь	eCh2 DensityPairs (Пары плотностеи в канале 2)	RW	INT32
2980	2980	10624	Пользователь	Ch2 Peak% (% пик. знач. канала 2)	RW	INT32
	2982	10626	Пользователь	Ch2 Min Peak% (Мин. % пик. знач. канала 2)	RW	INT32
	2984	10628	Пользователь	Ch2 Max Peak% (Макс. % пик. знач. канала 2)	RW	INT32
	2986	10630	Пользователь	Включение окон отслеживания в канале 2 (Ch2)	RW	INT32
2A00	2A00	10752	RO	Скорость канала 2 (Ch2)	RO	(IEEE 32 бита)
	2A02	10754	RO	Объемный показатель канала 2 (Ch2)	RO	(IEEE 32 бита)
	2A04	10756	RO	Стандартный объемный показатель канала 2 (Ch2)	RO	(IEEE 32 бита)
	2A06	10758	RO	Массовый расход канала 2 (Ch2)	RO	(IEEE 32 бита)
2A40	2A40	10816	RO	Прямые итоговые данные партии канала 2 (Ch2)	RÔ	(IEEE 32 бита)
	2A42	10818	RO	Обратные итоговые данные партии канала 2 (Ch2)	RŌ	(IEEE 32 бита)

	1- 1-	-		inerhen inernene (inheidenin		
	Регистр (в шестнадца теричн.)	Регистр (в десятичн.)	Уровень доступа	Описание	RO (только чтение)/RW (чтение/ запись)	Формат
	2A44	10820	RO	Итоговые данные нетто партии канала 2 (Ch2)	RO	(IEEE 32 бита)
	2A46	10822	RO	Время средних итоговых данных партии канала 2 (Ch2)	RO	(IEEE 32 бита)
	2A48	10824	RO	Прямые итоговые данные инвентаризации канала 2 (Ch2)	RO	(IEEE 32 бита)
	2A4A	10826	RO	Обратные итоговые данные инвентаризации канала 2 (Ch2)	RO	(IEEE 32 бита)
	2A4C	10828	RO	Итоговые данные нетто инвентаризации канала 2 (Ch2)	RO	(IEEE 32 бита)
	2A4E	10830	RO	Время средних итоговых данных инвентаризации канала 2 (Ch2)	RO	(IEEE 32 бита)
2A80	2A80	10880	RO	Ch2 Transit Time Up (Транзитное время вверх канала 2)	RO	(IEEE 32 бита)
	2A82	10882	RO	Ch2 Transit Time Dn (Транзитное время вниз канала 2)	RO	(IEEE 32 бита)
	208/	1088/	RO	Ch2 DeltaT (Лельта Т канала 2)	RO	(IEEE 32 GMTO)
	2A86	10886	RO	Ch2 Up Signal Quality (Качество	RO	(IEEE 32 бита)
	2A88	10888	RO	Ch2 Dn Signal Quality (Качество нижнего сигнала канала 2)	RO	(IEEE 32 бита)
	2A8A	10890	RO	Ch2 Up Amp Disc (Дискриминатор верхней амплитуды канала 2)	RO	(IEEE 32 бита)
	2A8C	10892	RO	Ch2 Dn Amp Disc (Дискриминатор нижней амплитуды канала 2)	RO	(IEEE 32 бита)
	2A8E	10894	RO	Соотношение сигнал/шум (SNR) в верхнем канале канала 2 (Ch2)	RO	(IEEE 32 бита)
	2A90	10896	RO	Соотношение сигнал/шум (SNR) в нижем канале канала 2 (Ch2)	RO	(IEEE 32 бита)
	2A92	10898	RO	Время в буфере в верхнем канале канала 2 (Ch2)	RO	(IEEE 32 бита)
	2A94	10900	RO	Время в буфере в нижнем канале канала 2 (Ch2)	RO	(IEEE 32 бита)
	2A96	10902	RO	Усиление сигнала вверх канала 2 (Ch2)	RO	(IEEE 32 бита)
	2498	10904	RO	Усиление сигнала вниз канала 2 (Ch2)	RO	(IFEE 32 6ита)
	2A9A	10906	RO	Коэффициент частичной корреляции вверх канала 2 (Ch2)	RO	(IEEE 32 бита)
	2A9C	10908	RO	Коэффициент частичной корреляции вниз канала 2 (Ch2)	RO	(IEEE 32 бита)
2AC0	2AC0	10944	RO	Скорость распространения звука канала 2 (Ch2)	RO	(IEEE 32 бита)
	2AC2	10946	RO	Текущее число Рейнольдса канала 2 (Ch2)	RO	(IEEE 32 бита)
	2AC4	10948	RO	Текущий поправочный коэффициент канала 2 (Ch2)	RO	(IEEE 32 бита)
	2AC6	10950	RO	Длина пути P канала 2 (Ch2)	RO	(IEEE 32 бита)
	2AC8	10952	RO	Осевая длина L канала 2 (Ch2)	RO	(IEEE 32 бита)
2B00	2800	11008	RO	Ch2 Up +- Peak (+- пик. знач. вверх канала 2)	RO	INT32
	2802	11010	RO	Ch2 Dn +- Peak (+- пик. знач. вниз канала 2)	RO	INT32
	2B04	11012	RO	Динамическое пороговое значение в верхнем (UP) канале канала 2 (Ch2)	RO	INT32
	2B06	11014	RO	Динамическое пороговое значение в нижнем (DOWN) канале канала 2 (Ch2)	RO	INT32
3000	3000	12288	Пользователь	eSupplyTempLow (Низкий уровень температуры подачи)	RW	(IEEE 32 бита)
	3002	12290	Пользователь	eEnergyRRWRESV1	RW	(IEEE 32 бита)
	3004	12292	Пользователь	eReturnTempLow (Низкий уровень температуры возврата)	RW	(IEEE 32 бита)
	3006	12294	Пользователь	eEnergyRRWRESV2	RW	(IEEE 32 бита)

Таблица 17: Карта регистров Modbus (продолжение)

	Регистр (в шестнадца теричн.)	Регистр (в десятичн.)	Уровень доступа	Описание	RO (только чтение)/RW (чтение/ запись)	Формат
	3008	12296	Пользователь	Базовое значение аналогового входа 1	RW	(IEEE 32 бита)
	300A	12298	Пользователь	Полное значение аналогового входа 1	RW	(IEEE 32 бита)
	300C	12300	Пользователь	Базовое значение аналогового входа 2	RW	(IEEE 32 бита)
	300E	12302	Пользователь	Полное значение аналогового входа 2	RW	(IEEE 32 бита)
	3010	12304	Пользователь	Analog Input 1 Zero Cali Value (Нулевое калибровочное значение аналогового входа 1)	RW	(IEEE 32 бита)
	3012	12306	Пользователь	Analog Input 1 Span Cali Value (Калибровочное значение интервала аналогового входа 1)	RW	(IEEE 32 бита)
	3014	12308	Пользователь	Analog Input 2 Zero Cali Value (Нулевое калибровочное значение аналогового входа 2)	RW	(IEEE 32 бита)
	3016	12310	Пользователь	Analog Input 2 Span Cali Value (Калибровочное значение интервала аналогового входа 2)	RW	(IEEE 32 бита)
3100	3100	12544	Пользователь	eEnergyEnable (Включение энергии)	RW	INT32
	3102	12546	Пользователь	eEnergySystem (Энергетическая система)	RW	INT32
	3104	12548	Пользователь	eFlowMeasure (Измерение расхода)	RW	INT32
	3106	12550	Пользователь	eEnthalpyCalc (Расчет энтальпии)	RW	INT32
	3108	12552	Пользователь	eSupplyTemp (Температура подачи)	RW	INT32
	310A	12554	Пользователь	eReturnTemp (Температура возврата)	RW	INT32
	310C	12556	Пользователь	eEnergyIRWRSEV1	RW	INT32
	310E	12558	Пользователь	eAl1Function (Функция аналогового входа 1)	RW	INT32
	3110	12560	Пользователь	eEnergyIRWRSEV2	RW	INT32
	3112	12562	Пользователь	eAl1Function (Функция аналогового входа 1)	RW	INT32
	3114	12564	Пользователь	eEnergyChannel (Канал энергии)	RW	INT32
	3116	12566	Пользователь	eEnergyPoint (Точка энергии)	RW	INT32
	3118	12568	Пользователь	eAI1KPairs (Пары К аналогового входа 1)	RW	INT32
	311A	12570	Пользователь	eAl1KPairs (Пары К аналогового входа 1)	RW	INT32
	311C	12572	Пользователь	eExtPwrEnable (Включение внешнего питания)	RW	INT32
	311E	12574	Пользователь	включение энергосберегающего режима (режим длительной работы батареи)	RW	INT32
	3120	12576	Пользователь	Время измерений в энергосберегающем режиме	RW	INT32
	3122	12578	Пользователь	Время бездействия в энергосберегающем режиме	RW	INT32
3200	3200	12800	RO	eAI1Current (Ток аналогового входа 1)	RO	(IEEE 32 бита)
	3202	12802	RO	eAl2Current (Ток аналогового входа 2)	RO	(IEEE 32 бита)
	3204	12804	RO	eAI1Val (Значение аналогового входа 1)	RO	(IEEE 32 бита)
	3206	12806	RO	eAI1Val (Значение аналогового входа 1)	RO	(IEEE 32 бита)
	3208	12808	ко	eEnergy (Энергия)	KO	(ІЕЕЕ 32 бита)
3300	3300	13056	кU	еАнтратріе (замер аналогового входа 1)	кU	IN132
	3302	13058	RO	eAI2Sample (Замер аналогового входа 2)	RO	INT32

9.3 Обмен данными по интерфейсу Bluetooth

Система РТ900 использует *протокол Bluetooth* для обмена данными между передатчиком и планшетом. В целях обеспечения безопасности изделия и пользовательских данных был разработан собственный фирменный протокол на базе общего протокола *Bluetooth* 4.0.

По поводу режима обмена данными по Bluetooth обратитесь к Спецификации Bluetooth 4.0.

Примечание: Передатчик РТ900 не связывается автоматически с ранее подключенным к нему планшетом и не связывается автоматически с неподключенным планшетом. Для инициации подключения неподключенного передатчика следует использовать приложение (APP) планшета. Однако передатчик может оставаться подключенным к другим планшетам. [эта страница намеренно оставлена без содержания]

Приложение А. Спецификации

А.1 Эксплуатация и эксплуатационные характеристики

Типы жидкостей

Жидкости: Акустически проводимые жидкости, включая большинство прозрачных жидкостей и многие жидкости с ограниченным содержанием механических примесей или газовых пузырьков.

Измерение расхода

Запатентованный режим Correlation Transit-Time^{тм}

Размеры трубопровода

Стандартные: от 0,5 до 24 дюймов (от 15 до 600 мм) *Дополнительно:* до 300 дюймов (7500 мм), по запросу

Толщина стенки трубы

до 3 дюймов (76,2 мм)

Материал трубы

Все металлы и большинство пластиков

Обратиться за консультацией в GE в случае применения на бетонных, композитных материалах, или на трубопроводов с высокой степенью коррозии или с покрытием.

Точность

±1% показания (2 дюйма/50 мм или большие размеры трубы) ±2% показания (размеры трубы от 0,5 дюйма/15 мм до <2 дюймов/50 мм)

Монтаж подразумевает полностью установленный симметричный профиль потока (типично, 10 диаметров трубы вверх по потоку и 5 диаметров трубы вниз по потоку от прямого участка трубопровода). Окончательная точность монтажа зависит от множества факторов, включая, среди других, жидкость, диапазон температуры, центральность трубы.

Повторяемость

±0,2% показание

Диапазон (двунаправленный)

От 0,1 до 40 фт/с (от 0,03 до 12,19 м/с)

Время отклика

От 2 Гц

Параметры измерения

Скорость, объем, масса, энергия, общий расход

Каналы

1 или 2 канала

А.2 Передатчик расхода РТ900

Корпус

Класс защиты IP65

Спецификации

Вес: 3 фнт (1,4 кг) Размер (в х ш х ср. г): 7,9 х 4,3 х 1,5 дюйма (200 х 109 х 38 мм) Монтаж: Мягкая полоса вокруг трубы или магнитный зажим

Аналоговые входы

4-20 мА (кол-во 2)

Аналоговый выход

4-20 мА (кол-во 1)

Цифровой выход

Импульсный (сумматор), частота, ав. сигнал (кол-во 1)

Цифровая связь

- Modbus через порт RS485
- Bluetooth[®] беспроводная
- Порт Micro-USB

Аккумуляторная батарея

Тип: Ионно-литиевые (большой емкости, перезаряжаемые) Срок службы (непрерывная эксплуатация): 18-20 часов Срок службы (режим экономии энергии): >4 дня Зарядное устройство: от 100 до 240 В пер. тока (50/60 Гц) Время зарядки: До 3 часов (от 0% до 100%)

Рабочая температура

от -20 до 55°С (от -4 до 131°F)

Классификация электронных схем

- СЕ (директива по ЭМС) IEC 61326-1:2013, IEC 61326-2-3:2013, LVD 2006/95/EC, EN 61010-1 2010
- ANSI/UL STD. 61010-1, CAN/CSA STD. C22.2 NO. 61010-1
- Соответствие WEEE (директива 2012/19/EU)
- Соответствие RoHS (директива 2002/95/EC)

А.З Интерфейс пользователя

Дисплей

Планшет с операционной системой Android (версия 4.4 или выше), Емкостной жидкокристаллический сенсорный экран, разрешение 800 x 1280

Размеры

- Планшет 7 дюймов: 7,75 x 4,75 x 0,75 дюйма (196 x 120 x 19 мм), типично
- Планшет 8 дюймов: 8,75 x 6,00 x 0,75 дюйма (222 x 152 x 19 мм), типично

Ресурс аккумулятора

>12 часов непрерывного использования, типично, (в зависимости от конкретного планшета)

Зарядное устройство для аккумуляторной батареи

от 100 до 250 В пер. тока, 50/60 Гц

Рабочая температура

от 0 до 50°С (от 32 до 122°F)

Связь с передатчиком расхода

Bluetooth®

А.4 Программное приложение (РТ900 АРР)

Интуитивный, интерфейс Swipe Screen

- Цветная конструкция с исходными графическими данными
- Программирование обучающего типа
- Предварительно установленные параметры площадки
- Многофункциональные опции дисплея
- Обширная справка онлайн

Языки интерфейса

Английский, арабский, китайский (упрощенный), голландский, французский, немецкий, итальянский, японский, корейский, португальский, русский, испанский, шведский, турецкий

Установка РТ900 АРР

- Файл предоставляется на карточке SD
- Бесплатная загрузка из Google Play Store
- Бесплатная загрузка с сайта GE (доступен код QR)

А.5 Накладные измерительные преобразователи

Диапазон температуры*

Стандартный: от -40 до 302°F (от -40 до 150°C) *Дополнительно:* от -328 до 752°F (от -200 до 400°C)

*Смотри спецификации конкретного измерительного преобразователя, в которых приведен точный диапазон температуры

Монтаж

- Новое крепежное приспособление РТ9 для труб ≥2 дюйма (50 мм)
- Крепежное приспособление CF-LP для труб от 0,5 дюйма (15 мм) до 2 дюймов (50 мм)

Кабели измерительного преобразователя РТ9

Стандартная длина: 25 фт (8 м) Максимальная длина: 100 фт (30 м) Диапазон температуры: от -40° до 302°F (от -40° до 150°C)

А.6 Комплектующие

Чехлы

Стандартный: Мягкая нейлоновая переносная сумка с ремнем и соответствующими разделителями оборудования Дополнительно: Жесткий корпус на колесиках и соответствующими отделениями для оборудования

Кабели

Входные и выходные кабели: Аналоговые и цифровые кабельные переходники: Соединители между ТNC и BNC или UTDR

А.7 Опции

Комплект измерения энергии

Дополнительный *комплект измерения энергии* рассчитывает расход энергии и суммарную энергию.

- *Передатчик температуры:* с питанием от контура, 4-проводные резисторные датчики температуры РТ1000 с монтажом на поверхности, сертифицированные NIST
- *Точность:* ±0,12°С (±0,22°F) показания
- Диапазон: от 0 до 149°С (от 32 до 300°F), стандартный

Измеритель толщины GE PocketMike

- Компактная конструкция из нержавеющей стали, IP67
- Поворотный, высококонтрастный ЖК-дисплей
- Простая эксплуатация при помощи четырех клавиш
- Встроенный, заменяемый зонд 5 Мгц
- Диапазон от 1 до 250 мм (от 0,040 до 10 дюймов)
- Стандартные аккумуляторные батареи АА

Запасная аккумуляторная батарея

*Блок аккумуляторных батарей: И*онно-литиевые (большой емкости, перезаряжаемые) *Зарядное устройство:* от 100 до 240 В пер. тока (50/60 Гц)

Кабельный переходник

Соединители между TNC и BNC или UTXDR

А.8 Требования заказчика к кабелям для соединений AIO/DIO

- Диаметр кабеля заказчика для соединений AIO/DIO: от 5 до 8 мм
- Диапазон температуры кабеля заказчика для соединений AIO/DIO: от 14° до 131°F (от -10° до 55°C)
- Диапазон поперечного сечения кабеля в соответствии со стандартами СЕ и UL:

от 20 до 28 AWG

[эта страница намеренно оставлена без содержания]

Приложение В. Записи данных

В.1 Запись об обслуживании

Если какая-либо процедура обслуживания производится на расходомере РТ900, подробности процедуры должны записываться в данном приложении. Точная статистика обслуживания расходомера может оказаться крайне полезной для поиска устранения возникающих в будущем проблем. Записывать полные и подробные данные об обслуживании РТ900 в *Таблица 18* ниже. В случае необходимости, создавать копии таблицы.

Дата	Описание произведенного обслуживания	Выполнил

Таблица 18: Запись об обслуживании

В.2 Исходные установки

Значения установок параметров немедленно после монтажа расходомера и подтверждение надлежащей работы должны быть внесены в *Таблица 19* ниже.

Параметр	Исходное значение
Наружный диам. трубы	
Внутренний диам. трубы	
Толщина стенки трубы	
Материал трубы	
Скорость звука трубы	
Толщина оболочки	
Материал оболочки	
Внутр. диам. измерительного преобразователя	
Частота измерительного преобразователя	
Тип клина измерительного преобразователя	
Угол клина измерительного преобразователя	
SOS клина измерительного преобразователя	
ТW измерительного преобразователя	
Траверсы	
Тип жидкости	
SOS жидкости	
Минимальный SOS жидкости	
Maксимум SOS жидкости	
Температура жидкости	
Расстояние между изм. преобразователями	

Таблица 19: Исходные установки параметров системы

В.3 Исходные параметры диагностики

Значения установок параметров диагностики измерительного преобразователя немедленно после монтажа расходомера и подтверждение надлежащей работы должны быть внесены в *Таблица 20* ниже. Данные исходные значения могут быть сравнены с текущими значениями для обеспечения диагностики неисправности системы.

Параметр	Исходное значение
Скорость	
Действительная объемная	
Стандартизированная объемная	
В прям. напр., всего партий	
В обратном направлении, всего партий	
Чистый итог партий	
Время сумматора партий	
В прям. напр., запасов, всего	
В обратном направлении, запасов, всего	
Чистый итог запасов	
Время сумматора запасов	
Массовый поток	
Скорость звука	
Число Рейнольдса	
Коэф. К	
Время передачи вверх	
Время передачи вниз	
Дельта Т	
Качество сигнала вверх	
Качество сигнала	
Дискриминатор верхней амплитуды	
Дискриминатор нижней амплитуды вниз	
Соотношение сигнал/шум (SNR) верх	
Соотношение сигнал/шум (SNR) вниз	

Таблица 20: Исходные параметры диагностики

Параметр	Исходное значение
Активный TW вверх	
Активный TW вниз	
Коэф. усил. вверх	
Коэф. усил. вниз	
Статус ошибки	
Сообщенная ошибка	
Пик. знач. вверх	
Пик. знач. вниз	
% пик. знач. вверх	
% пик. знач. вниз	

Таблица 20: Исходные параметры диагностики (продолжение)

Α

APP (PT900)	
Версия	
Коды ошибок	
Лицензионное соглашение	
Настройка	
Получение из Google Play Store	
Получение с SD-карты	
Спецификации	155
Установка	
Установка или обновление	
Экран главного меню	
Экран слайд-меню	
Языки интерфейса	
В	
Bluetooth	
Обмен данными	38 151
Полтверждение полкпючения	53
G	
Google Play Store, получение APP РТ900	
К	
К-фактор	71
······································	
M	
Modbus	
Карта регистров	
Конфигурирование выхода	
Обмен данными	141
Р	
PT900	
Описание системы.	
Программное обеспечение, обновление	
Распаковка	
Типовая установка	
Упакованный в жесткий футляр	
Электрические соединения	
0	
QK-код, загрузка новой версии АРР Р1900	

S

SD-карта
Получение нового АРР РТ900 46
Руководство по быстрому запуску 140
Z
Аккумуляторная батарея
Замена
Зарядка и хранение
Оставшееся время работы 111
Техническое обслуживание
Установка
Утилизация
Аналоговые входы
Калибровка 117
Конфигурирование
Аналоговые входы и выходы, подключение
Аналоговые выходы
Доступные источники данных
Калибровка
Конфигурирование
Безопасность
Вспомогательное оборудование viii
Общие вопросыvii
Персональное оборудование viii
Беспроводной интерфейс
См. Bluetooth
Блок аккумуляторных батарей
Спецификации
Валидация нулевого расхода
Версия, проверка АРР РТ900 45
Включение и выключение передатчика
Выключение журнала 105
Гарантия
Графический дисплей
Конфигурирование
Просмотр
Дата публикации і
Держатели измерительных преобразователей, проверка
Десятичный формат, отображение
Диагностика

Доступные параметры132
Значения параметров
Исходные значения параметров
Отображение параметров
Руководство по поиску и устранению неисправностей
Дисплей
Графический формат
Десятичный формат
Диагностические параметры 100
Доступные переменные
Несколько измерений
Одно измерение
Экран измерений, типовой
Экран сумматора
Добавление журнала регистрации 102
Единицы измерения, выбор
Журналы регистрации
Выключение
Добавление
Конфигурирование101
Меню
Параметры
Просмотр
Редактирование
Удаление
Замена аккумуляторной батареи40
Запасные части
Записи данных
Запись об обслуживании159
Исходные параметры диагностики161
Исходные установки
Запись исходных установок 160
Запись об обслуживании159
Зарядка аккумуляторной батареи
Зарядка передатчика и планшета
Измерения
Просмотр нескольких
Типовой экран
Экран настройки

Измерительные преобразователи
Держатели
Меню
Меню УСТАНОВКА
Параметры
Подключения передатчика
Проблемы
Расстояние
Расчет расстояния
Связующее вещество, нанесение
Спецификации
Установка17
Интерфейс пользователя
Спецификации
Информация об устройстве, для передатчика 110
Источники данных, аналоговых выходов
Калибровка
Аналоговые входы117
Аналоговые выходы
Сумматор
Карта регистров, Modbus
Кинематическая вязкость
Кнопка питания, передатчика
Коды ошибок, РТ900 АРР 127
Коды ошибок, АРР РТ900 135
Конфигурация проходов
Коэффициент калибровки
Коэффициент счетчика
Крепеж
Монтаж, РТ9 9
Размещение цепи
Крепежное приспособление
См. Крепеж
Лицензионное соглашение, приложения РТ900 50
Материалы, трубы

Меню
ВХОДЫ
ВЫХОДЫ
ДОПУСКИ124
ЕДИНИЦЫ ИЗМЕРЕНИЯ57
ЖУРНАЛЫ РЕГИСТРАЦИИ104
ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ
КАЛИБРОВКА
НАСТРОЙКА СЧЕТЧИКА118
Опции программирования77
ПЕРЕДАТЧИК109
ПОЛЬЗОВАТЕЛЬСКИЕ ФУНКЦИИ87
ПРОГРАММИРОВАНИЕ
СЕРВИС
СПРАВКА
ТЕКУЧАЯ СРЕДА64
ТЕСТИРОВАНИЕ
ТРУБА
УСТАНОВКА
Меню ВХОДЫ
Меню ВЫХОДЫ
Меню ДОПУСКИ
Меню КАЛИБРОВКА
Меню НАСТРОЙКА СЧЕТЧИКА118
Меню опций программирования77
Меню ПОЛЬЗОВАТЕЛЬСКИЕ ФУНКЦИИ
Меню программирования каналов
Меню СЕРВИС
Меню ТЕСТИРОВАНИЕ
Меню УСТАНОВКА
Настройки, сохранения
Несколько измерений, отображение
Номер документа і
Обмен данными
Bluetooth
Modbus
Обнаружение пика, программирование
Одно измерение, отображение
Окно отслеживания
Операторы пользовательских функций

Операторы, пользовательских функций
Опция ЭНЕРГИЯ, программирование
Ошибки расхода
Ошибки, расхода
Параметры
Измерительные преобразователи
Регистрация в журнале 103
Передатчик
Варианты монтажа
Включение и выключение
Зарядка
Информация об устройстве 110
Кнопка питания
Меню
Меню ДОПУСКИ
Меню КАЛИБРОВКА
Меню НАСТРОЙКА СЧЕТЧИКА118
Меню СЕРВИС
Меню ТЕСТИРОВАНИЕ 121
Подключение к планшету 49, 52
Подключение питания
Подключения измерительного преобразователя
Порт USB
Программное обеспечение, обновление
Светодиодные индикаторы 42
Спецификации
Список подключения 54
Этикетка, серийный номер
Передатчик РТ900
См. Передатчик
Планшет
Зарядка
Подключение к передатчику 49
Поддержка
Услуги GE
Центры поддержки клиентов 2
Подключение
Начальная настройка 52
Подтверждение
C

	89
Поправочный коэффициент Рейнольдса	69
Пороговое значение, программирование	120
Порт USB, использование	38
Правила FCC/Лицензия министерства промышленности Канады	xi
Правила возврата	174
Предупредительное письмо Тайваня	xiii
Предупреждение КСС Кореи	xiii
Приложение (РТ900)	
Коды ошибок	127
Экран измерений	91
Языки интерфейса	111
Проблемы	
Измерительный преобразователь	132
Текучая среда	130
Труба	131
Программное обеспечение, передатчика	112
Просмотр журнала регистрации	107
Просмотр измерений	94
Размеры, трубы	62
Распаковка системы РТ900	4
Расстояние между измерительными преобразователями, задаваемое	
пользователем	74
гасстояние между измерительными преобразователями, задаваемое пользователем	74
Расстояние между измерительными преобразователями, задаваемое пользователем	
Расстояние между измерительными преобразователями, задаваемое пользователем	
Расстояние между измерительными преобразователями, задаваемое пользователем	74 73
Расстояние между измерительными преобразователями, задаваемое пользователем	
Расстояние между измерительными преобразователями, задаваемое пользователем	74 73 79 79 ix, 1, 51 106 140
Расстояние между измерительными преобразователями, задаваемое пользователем	
Расстояние между измерительными преобразователями, задаваемое пользователем Расстояние, между измерительными преобразователями Расчет расстояния, между измерительными преобразователями Расчет энтальпии Регистрация, изделия GE Редактирование журнала регистрации Руководство по быстрому запуску С нечетным числом проходов, установка Светодиодные индикаторы, передатчика	
Расстояние между измерительными преобразователями, задаваемое пользователем Расстояние, между измерительными преобразователями Расчет расстояния, между измерительными преобразователями Расчет энтальпии Регистрация, изделия GE Редактирование журнала регистрации Руководство по быстрому запуску С нечетным числом проходов, установка Светодиодные индикаторы, передатчика Связующее вещество, нанесение	
Расстояние между измерительными преобразователями, задаваемое пользователем. Расстояние, между измерительными преобразователями Расчет расстояния, между измерительными преобразователями Расчет энтальпии Регистрация, изделия GE. Редактирование журнала регистрации. Руководство по быстрому запуску С нечетным числом проходов, установка Светодиодные индикаторы, передатчика Связующее вещество, нанесение Сервисные программы.	74 73
Расстояние между измерительными преобразователями, задаваемое пользователем. Расстояние, между измерительными преобразователями Расчет расстояния, между измерительными преобразователями Расчет энтальпии Регистрация, изделия GE. Редактирование журнала регистрации. Руководство по быстрому запуску С нечетным числом проходов, установка Связующее вещество, нанесение Сервисные программы. Сетевое питание, подключение.	74 73 9 79 ix, 1, 51 106 140 22 42 42 18 ix 33
Расстояние между измерительными преобразователями, задаваемое пользователем. Расстояние, между измерительными преобразователями Расчет расстояния, между измерительными преобразователями Расчет энтальпии Регистрация, изделия GE. Редактирование журнала регистрации. Руководство по быстрому запуску С нечетным числом проходов, установка Светодиодные индикаторы, передатчика Сервисные программы. Сетевое питание, подключение. Скорость распространения звука	
Расстояние между измерительными преобразователями, задаваемое пользователем	
Расстояние между измерительными преобразователями, задаваемое пользователем. Расстояние, между измерительными преобразователями Расчет расстояния, между измерительными преобразователями Расчет энтальпии Регистрация, изделия GE. Редактирование журнала регистрации. Руководство по быстрому запуску С нечетным числом проходов, установка Светодиодные индикаторы, передатчика Связующее вещество, нанесение Сервисные программы. Сстевое питание, подключение. Скорость распространения звука Ввод	
Расстояние между измерительными преобразователями, задаваемое пользователем. Расстояние, между измерительными преобразователями Расчет расстояния, между измерительными преобразователями Расчет энтальпии Регистрация, изделия GE. Редактирование журнала регистрации. Руководство по быстрому запуску С нечетным числом проходов, установка Светодиодные индикаторы, передатчика Связующее вещество, нанесение Сетевое питание, подключение. Скорость распространения звука Валидация Ввод Соблюдение требований законодательства	
Расстояние между измерительными преобразователями, задаваемое пользователем	
Расстояние между измерительными преобразователями, задаваемое пользователем	

Сохранение своих настроек
Спецификации
Блок аккумуляторных батарей 154
Интерфейс пользователя 155
Комплектующие
Накладные измерительные преобразователи
Опции
Передатчик расхода 154
Программное приложение (РТ900 АРР) 155
СПРАВКА
Меню
Список тем
Средний коэффициент
Ссылки на услуги
Сумматор
Калибровка
Отображение
Таблица плотности
Текучая срела
Лоступные типы
Меню 64
Проблемы 130
Таблица плотности 80
Температура возврата 80
Температура возврата
Температура подачи
Канад образнов сигнадов 123
Сторожерая судир 122
Таат канала образнов силиалов 122
Тест канала образцов сигналов
Тест сторожевой схемы
Технические характеристики
Эксплуатация и эксплуатационные характеристики
Техническое оослуживание, аккумуляторной батареи
Типографские условные обозначения
Требования к кабелям 157

Труба	
Материалы	62
Меню	61
Проблемы	131
Размеры	62
Футеровка	63
Удаление журнала регистрации	105
Установка с	
четным числом проходов (расстояние более 305 мм)	
четным числом проходов (расстояние менее 305 мм)	
Утилизация аккумуляторной батареи	41
Футеровка, трубы	63
Футляр, жесткий (вместе с содержимым)	5
Хранение аккумуляторной батареи	
Цифровой выход	
Конфигурирование	84
Подключение	
Экран главного меню	55
Экран сведений о	134
Экран слайд-меню	56
Электрические соединения	
Аналоговые входы и выходы	
Измерительные преобразователи	
Кабель USB	
Питание передатчика	
Сетевое питание	
Требования	
Цифровой выход	
Энергетические кабели	
Энергетические кабели (дополнительные), подключение	
Энергосберегающий режим, программирование	119
Этикетка, серийный номер	33, 53
Языки интерфейса, РТ900 АРР	111
Языки интерфейса, АРР РТ900	50, 155

[эта страница намеренно оставлена без содержания]

Гарантия

Каждый прибор, выпущенный компанией GE Sensing, имеет гарантию на отсутствие дефектов материала и качества изготовления. Ответственность по данной гарантии ограничивается восстановлением прибора до нормальной эксплуатации или заменой прибора по собственному усмотрению GE Sensing. Плавкие предохранители и батарейки определенно исключаются от этой ответственности. Данная гарантия действительна от даты поставки первоначальному покупателю. Если GE Sensing решает, что оборудование было неисправно, то гарантийный период исчисляется следующим образом:

- один год с даты доставки для электронных или механических отказов
- один год с даты доставки для срока годности датчика при хранении на складе

Если GE Sensing определяет, что оборудование было повреждено вследствие неправильного использования, неправильной установки, использования неавторизованных запчастей или вследствие условий эксплуатации, выходящих за пределы указаний GE Sensing, то ремонты не покрываются данной гарантией.

Гарантии, сформулированные в данном документе, являются единственными и заменяют все другие гарантии будь то предусмотренные по закону, выраженные или подразумеваемые (включая гарантии по коммерческому качеству и годности для конкретного назначения, а также гарантии, возникающие вследствие заведенного порядка или использования или торговли).

Правила возврата

Если прибор производства GE Sensing становится неисправным в течение гарантийного периода, то необходимо выполнить следующую процедуру:

- 1. Известить GE Sensing, указывая полный перечень подробностей неисправности, а также сообщая номер модели и серийный номер прибора. Если природа неисправности указывает на потребность эксплуатационного обслуживания на заводе, GE Sensing выдает НОМЕР РАЗРЕШЕНИЯ НА ВОЗВРАТ (RAN), и обеспечивает инструкциями по транспортировке для возврата прибора в сервисный центр.
- 2. Если GE Sensing указывает вам отправить ваш прибор в сервисный центр, то его транспортировка должна быть предварительно оплачена в авторизованном ремонтном пункте, указанном в инструкциях по транспортировке.
- **3.** После приемки GE Sensing произведет проверку прибора на предмет определения причины неисправности.

Затем будет предпринято одно из следующих действий:

- Если повреждение <u>покрывается</u> условиями гарантии, прибор будет отремонтирован бесплатно для владельца и возвращен.
- Если GE Sensing определяет, что повреждение не покрывается условиями гарантии, или, если срок действия гарантии закончен, то будет рассчитана стоимость ремонта по стандартным расценкам. После получения согласия владельца для продолжения прибор будет отремонтирован и возвращен.

Центры поддержки клиентов

США

The Boston Center 1100 Technology Park Drive Billerica, MA 01821 U.S.A. Тел.: 800 833 9438 (бесплатный) 978 437 1000 Электронная почта: sensing@ge.com

Ирландия

Sensing House Shannon Free Zone East Shannon, County Clare Ireland Тел.: +35 361 470200 Электронная почта: gesensingsnnservices@ge.com

ISO 9001:2008 Аттестованная компания

www.gemeasurement.com/quality-certifications

www.gemeasurement.com

©2017 General Electric Company. Все права защищены. Техническое содержание подлежит изменениям без уведомления.

910-315-RU Ред. А